Charmainemahachi
commited on
Upload image_caption_generator.py
Browse files- image_caption_generator.py +120 -0
image_caption_generator.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Image caption generator.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1kJdblTHuqDn8HCKTuEpoApkN05Gzjpot
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install gradio #used for creating the demo
|
11 |
+
|
12 |
+
!pip install timm
|
13 |
+
|
14 |
+
!pip install huggingface_hub
|
15 |
+
|
16 |
+
from huggingface_hub import notebook_login
|
17 |
+
|
18 |
+
notebook_login()
|
19 |
+
|
20 |
+
import gradio as gr
|
21 |
+
import requests
|
22 |
+
import matplotlib.pyplot as plt
|
23 |
+
import io
|
24 |
+
from PIL import Image
|
25 |
+
from matplotlib.patches import Rectangle
|
26 |
+
|
27 |
+
#Load model directly
|
28 |
+
from transformers import AutoProcessor, BlipForConditionalGeneration, pipeline
|
29 |
+
|
30 |
+
# Loading the BLIP model directly which generates the caption
|
31 |
+
processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
32 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
33 |
+
|
34 |
+
#Using transformers to load DETR model for object detection
|
35 |
+
#This model adds a bounding box and label to detected objects
|
36 |
+
object_detector = pipeline("object-detection", model="facebook/detr-resnet-50")
|
37 |
+
|
38 |
+
#generates the caption for uploaded image
|
39 |
+
def caption_generator(input_img):
|
40 |
+
inputs = processor(input_img, return_tensors="pt")
|
41 |
+
out = model.generate(**inputs, max_new_tokens=500)
|
42 |
+
caption = processor.decode(out[0], skip_special_tokens=True)
|
43 |
+
return caption
|
44 |
+
|
45 |
+
#function to filter the generated caption checking whether human, cats and/or dogs are present using the labels from the object detection
|
46 |
+
#this is the method used in this project
|
47 |
+
def filter_caption(object_detection_results):
|
48 |
+
labels = [result['label'] for result in object_detection_results]
|
49 |
+
keywords = ["dog","dogs", "cat","cats", "human","humans","man", "men","woman","women","child","children","adult","adults","person"]
|
50 |
+
return True if any(keyword in labels for keyword in keywords) else False
|
51 |
+
|
52 |
+
#function to filter the generated caption checking whether human, cats and/or dogs are present using the generated caption
|
53 |
+
#initial method considered
|
54 |
+
def filter(caption):
|
55 |
+
#If any of these keywords are present, True is returned
|
56 |
+
keywords = ["dog","dogs", "cat","cats", "human","humans","man", "men","woman","women","child","children","adult","adults","person"]
|
57 |
+
caption = caption.lower()
|
58 |
+
return True if any(keyword in caption for keyword in keywords) else False
|
59 |
+
|
60 |
+
#function to create the bounding box and label
|
61 |
+
#takes an image and list of results as inputs
|
62 |
+
def create_image_bbx_w_label(image, results):
|
63 |
+
|
64 |
+
# Set up the plot
|
65 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
66 |
+
ax.imshow(image)
|
67 |
+
|
68 |
+
# Plot the bounding boxes and labels
|
69 |
+
for res in results:
|
70 |
+
box = res['box']
|
71 |
+
width = box['xmax'] - box['xmin']
|
72 |
+
height = box['ymax'] - box['ymin']
|
73 |
+
|
74 |
+
rect = Rectangle((box['xmin'], box['ymin']), width, height, linewidth=1, edgecolor='r', facecolor='none')
|
75 |
+
ax.add_patch(rect)
|
76 |
+
|
77 |
+
# Position the label above the rectangle
|
78 |
+
label_position = (box['xmin'], box['ymin'] - 10)
|
79 |
+
|
80 |
+
# Display the label and score
|
81 |
+
label_text = f"{res['label']}: {res['score']:.2f}"
|
82 |
+
ax.text(*label_position, label_text, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
|
83 |
+
|
84 |
+
ax.axis('off')
|
85 |
+
|
86 |
+
fname = './img.png'
|
87 |
+
plt.savefig(fname, format='png', bbox_inches='tight', pad_inches=0)
|
88 |
+
|
89 |
+
plt.close(fig)
|
90 |
+
# Load this buffer into a PIL Image
|
91 |
+
pil_img = Image.open(fname)
|
92 |
+
|
93 |
+
# Return the PIL Image object
|
94 |
+
return pil_img
|
95 |
+
|
96 |
+
def image_caption_generator(input_image):
|
97 |
+
#detecting objects in image
|
98 |
+
object_detection_results = object_detector(input_image)
|
99 |
+
annotated_img = create_image_bbx_w_label(input_image, object_detection_results)
|
100 |
+
|
101 |
+
#Generating caption of input image
|
102 |
+
caption = caption_generator(input_image)
|
103 |
+
#Filtering the captions for specific case (humans and/or cats/dogs)
|
104 |
+
#filtered_caption = filter(caption) uncomment this if you want to filter using the generated caption
|
105 |
+
filtered_caption = filter_caption(object_detection_results) #uses the generated labels from object detection to filter the captions
|
106 |
+
if filtered_caption:
|
107 |
+
return caption, annotated_img
|
108 |
+
else:
|
109 |
+
return "There are no humans, cats or dogs in this image!", annotated_img
|
110 |
+
|
111 |
+
demo = gr.Interface(fn = image_caption_generator,
|
112 |
+
inputs=[gr.Image(label="Upload image", type="pil")],
|
113 |
+
outputs=[gr.Textbox(label="Caption"), 'image'],
|
114 |
+
title="CaptionPlus - Image Caption Generator",
|
115 |
+
description="Captioning images of humans, cats and/or dogs with object detection",
|
116 |
+
allow_flagging="never",
|
117 |
+
examples=["/content/Example.jpg", '/content/OIP.jpg'])
|
118 |
+
|
119 |
+
demo.launch(share=True)
|
120 |
+
|