import gradio as gr
from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    if not message[0] in list("{[("):
        message = f"(((Say Start))) {message} (((Say End)))"

    messages.append({"role": "user", "content": message})

    response = ""

    messageEnd = False

    for message in client.chat_completion(messages,max_tokens=max_tokens,stream=True,temperature=temperature,top_p=top_p,):
        token = message.choices[0].delta.content
        print(token,end = '|')
        response += token
        yield token
        #yield response


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
with open("prompt.txt","r") as prompt_file:
    prompt = prompt_file.read()


demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value=prompt, label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()