Spaces:
Running
Running
File size: 9,815 Bytes
45d6af3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import gradio as gr
import re
import pandas as pd
from io import StringIO
def remove_nested_branches(smiles):
"""Remove nested branches from SMILES string"""
result = ''
depth = 0
for char in smiles:
if char == '(':
depth += 1
elif char == ')':
depth -= 1
elif depth == 0:
result += char
return result
def identify_linkage_type(segment):
"""
Identify the type of linkage between residues
Returns: tuple (type, is_n_methylated)
"""
if 'OC(=O)' in segment:
return ('ester', False)
elif 'N(C)C(=O)' in segment:
return ('peptide', True) # N-methylated peptide bond
elif 'NC(=O)' in segment:
return ('peptide', False) # Regular peptide bond
return (None, False)
def identify_residue(segment, next_segment=None, prev_segment=None):
"""
Identify amino acid residues with modifications and special handling for Proline
Returns: tuple (residue, modifications)
"""
modifications = []
# Check for modifications in the next segment
if next_segment:
if 'N(C)C(=O)' in next_segment:
modifications.append('N-Me')
if 'OC(=O)' in next_segment:
modifications.append('O-linked')
# Special case for Proline - check for CCCN pattern and its cyclization
# Proline can appear in several patterns due to its cyclic nature
if any(pattern in segment for pattern in ['CCCN2', 'N2CCC', '[C@@H]2CCCN2', 'CCCN1', 'N1CCC']):
return ('Pro', modifications)
# Check if this segment is part of a Proline ring by looking at context
if prev_segment and next_segment:
if ('CCC' in segment and 'N' in next_segment) or ('N' in segment and 'CCC' in prev_segment):
combined = prev_segment + segment + next_segment
if re.search(r'CCCN.*C\(=O\)', combined):
return ('Pro', modifications)
# Aromatic amino acids
if 'Cc2ccccc2' in segment or 'c1ccccc1' in segment:
return ('Phe', modifications)
if 'c2ccc(O)cc2' in segment:
return ('Tyr', modifications)
if 'c1c[nH]c2ccccc12' in segment:
return ('Trp', modifications)
if 'c1cnc[nH]1' in segment:
return ('His', modifications)
# Branched chain amino acids
if 'CC(C)C[C@H]' in segment or 'CC(C)C[C@@H]' in segment:
return ('Leu', modifications)
if '[C@H](CC(C)C)' in segment or '[C@@H](CC(C)C)' in segment:
return ('Leu', modifications)
if 'C(C)C' in segment and not any(pat in segment for pat in ['CC(C)C', 'C(C)C[C@H]', 'C(C)C[C@@H]']):
return ('Val', modifications)
if 'C(C)C[C@H]' in segment or 'C(C)C[C@@H]' in segment:
return ('Ile', modifications)
# Small/polar amino acids
if ('[C@H](C)' in segment or '[C@@H](C)' in segment) and 'C(C)C' not in segment:
return ('Ala', modifications)
if '[C@H](CO)' in segment:
return ('Ser', modifications)
if '[C@H](C(C)O)' in segment or '[C@@H](C(C)O)' in segment:
return ('Thr', modifications)
if '[C@H]' in segment and not any(pat in segment for pat in ['C(C)', 'CC', 'O', 'N', 'S']):
return ('Gly', modifications)
# Rest of amino acids remain the same...
# [Previous code for other amino acids]
return (None, modifications)
def parse_peptide(smiles):
"""
Parse peptide sequence with enhanced Proline recognition
"""
# Split on peptide bonds while preserving cycle numbers
bond_pattern = r'(NC\(=O\)|N\(C\)C\(=O\)|N\dC\(=O\)|OC\(=O\))'
segments = re.split(bond_pattern, smiles)
segments = [s for s in segments if s]
sequence = []
i = 0
while i < len(segments):
segment = segments[i]
next_segment = segments[i+1] if i+1 < len(segments) else None
prev_segment = segments[i-1] if i > 0 else None
# Skip pure bond patterns
if re.match(r'.*C\(=O\)$', segment):
i += 1
continue
residue, modifications = identify_residue(segment, next_segment, prev_segment)
if residue:
# Format residue with modifications
formatted_residue = residue
if modifications:
formatted_residue += f"({','.join(modifications)})"
sequence.append(formatted_residue)
i += 1
is_cyclic = is_cyclic_peptide(smiles)
# Print debug information
print("\nDetailed Analysis:")
print("Segments:", segments)
print("Found sequence:", sequence)
# Format the final sequence
if is_cyclic:
return f"cyclo({'-'.join(sequence)})"
return '-'.join(sequence)
def is_cyclic_peptide(smiles):
"""
Determine if SMILES represents a cyclic peptide by checking:
1. Proper cycle number pairing
2. Presence of peptide bonds between cycle points
3. Distinguishing between aromatic rings and peptide cycles
"""
cycle_info = {}
# Find all cycle numbers and their contexts
for match in re.finditer(r'(\w{3})?(\d)(\w{3})?', smiles):
number = match.group(2)
pre_context = match.group(1) or ''
post_context = match.group(3) or ''
position = match.start(2)
if number not in cycle_info:
cycle_info[number] = []
cycle_info[number].append({
'position': position,
'pre_context': pre_context,
'post_context': post_context,
'full_context': smiles[max(0, position-3):min(len(smiles), position+4)]
})
# Check each cycle
peptide_cycles = []
aromatic_cycles = []
for number, occurrences in cycle_info.items():
if len(occurrences) != 2: # Must have exactly 2 occurrences
continue
start, end = occurrences[0]['position'], occurrences[1]['position']
# Get the segment between cycle points
segment = smiles[start:end+1]
clean_segment = remove_nested_branches(segment)
# Check if this is an aromatic ring
is_aromatic = any(context['full_context'].count('c') >= 2 for context in occurrences)
# Check if this is a peptide cycle
has_peptide_bond = 'NC(=O)' in segment or 'N2C(=O)' in segment
if is_aromatic:
aromatic_cycles.append(number)
elif has_peptide_bond:
peptide_cycles.append(number)
return len(peptide_cycles) > 0, peptide_cycles, aromatic_cycles
def analyze_single_smiles(smiles):
"""Analyze a single SMILES string"""
try:
is_cyclic, peptide_cycles, aromatic_cycles = is_cyclic_peptide(smiles)
sequence = parse_peptide(smiles)
details = {
'SMILES': smiles,
'Sequence': sequence,
'Is Cyclic': 'Yes' if is_cyclic else 'No',
'Peptide Cycles': ', '.join(peptide_cycles) if peptide_cycles else 'None',
'Aromatic Cycles': ', '.join(aromatic_cycles) if aromatic_cycles else 'None'
}
return details
except Exception as e:
return {
'SMILES': smiles,
'Sequence': f'Error: {str(e)}',
'Is Cyclic': 'Error',
'Peptide Cycles': 'Error',
'Aromatic Cycles': 'Error'
}
def process_input(smiles_input=None, file_obj=None):
"""Process either direct SMILES input or file input"""
results = []
# Handle direct SMILES input
if smiles_input:
result = analyze_single_smiles(smiles_input.strip())
results.append(result)
# Handle file input
if file_obj is not None:
content = file_obj.decode('utf-8')
for line in StringIO(content):
smiles = line.strip()
if smiles: # Skip empty lines
result = analyze_single_smiles(smiles)
results.append(result)
# Create formatted output
output_text = ""
for i, result in enumerate(results, 1):
output_text += f"Entry {i}:\n"
output_text += f"SMILES: {result['SMILES']}\n"
output_text += f"Sequence: {result['Sequence']}\n"
output_text += f"Is Cyclic: {result['Is Cyclic']}\n"
output_text += f"Peptide Cycles: {result['Peptide Cycles']}\n"
output_text += f"Aromatic Cycles: {result['Aromatic Cycles']}\n"
output_text += "-" * 50 + "\n"
return output_text
# Create Gradio interface
iface = gr.Interface(
fn=process_input,
inputs=[
gr.Textbox(
label="Enter SMILES string",
placeholder="Enter SMILES notation of peptide...",
lines=2
),
gr.File(
label="Or upload a text file with SMILES",
file_types=[".txt"],
type="binary"
)
],
outputs=gr.Textbox(
label="Analysis Results",
lines=10
),
title="Peptide Structure Analyzer",
description="""
Analyze peptide structures from SMILES notation to:
1. Determine if the peptide is cyclic
2. Identify peptide cycles vs aromatic rings
3. Parse the amino acid sequence
Input: Either enter a SMILES string directly or upload a text file with multiple SMILES (one per line)
""",
examples=[
# Example cyclic peptide with Proline
["CC(C)C[C@@H]1NC(=O)[C@@H]2CCCN2C(=O)[C@@H](CC(C)C)NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@H](C)NC(=O)[C@H](Cc2ccccc2)NC1=O", None],
# Example cyclic peptide with ester bond
["CC(C)C[C@@H]1OC(=O)[C@H](C)NC(=O)[C@H](C(C)C)OC(=O)[C@H](C)N(C)C(=O)[C@@H](C)NC(=O)[C@@H](Cc2ccccc2)N(C)C1=O", None]
],
allow_flagging="never"
)
# Launch the app
if __name__ == "__main__":
iface.launch()
|