File size: 9,815 Bytes
45d6af3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import gradio as gr
import re
import pandas as pd
from io import StringIO

def remove_nested_branches(smiles):
    """Remove nested branches from SMILES string"""
    result = ''
    depth = 0
    for char in smiles:
        if char == '(':
            depth += 1
        elif char == ')':
            depth -= 1
        elif depth == 0:
            result += char
    return result
def identify_linkage_type(segment):
    """
    Identify the type of linkage between residues
    Returns: tuple (type, is_n_methylated)
    """
    if 'OC(=O)' in segment:
        return ('ester', False)
    elif 'N(C)C(=O)' in segment:
        return ('peptide', True)  # N-methylated peptide bond
    elif 'NC(=O)' in segment:
        return ('peptide', False)  # Regular peptide bond
    return (None, False)
def identify_residue(segment, next_segment=None, prev_segment=None):
    """
    Identify amino acid residues with modifications and special handling for Proline
    Returns: tuple (residue, modifications)
    """
    modifications = []
    
    # Check for modifications in the next segment
    if next_segment:
        if 'N(C)C(=O)' in next_segment:
            modifications.append('N-Me')
        if 'OC(=O)' in next_segment:
            modifications.append('O-linked')

    # Special case for Proline - check for CCCN pattern and its cyclization
    # Proline can appear in several patterns due to its cyclic nature
    if any(pattern in segment for pattern in ['CCCN2', 'N2CCC', '[C@@H]2CCCN2', 'CCCN1', 'N1CCC']):
        return ('Pro', modifications)
    
    # Check if this segment is part of a Proline ring by looking at context
    if prev_segment and next_segment:
        if ('CCC' in segment and 'N' in next_segment) or ('N' in segment and 'CCC' in prev_segment):
            combined = prev_segment + segment + next_segment
            if re.search(r'CCCN.*C\(=O\)', combined):
                return ('Pro', modifications)

    # Aromatic amino acids
    if 'Cc2ccccc2' in segment or 'c1ccccc1' in segment:  
        return ('Phe', modifications)
    if 'c2ccc(O)cc2' in segment:  
        return ('Tyr', modifications)
    if 'c1c[nH]c2ccccc12' in segment:  
        return ('Trp', modifications)
    if 'c1cnc[nH]1' in segment:  
        return ('His', modifications)
        
    # Branched chain amino acids
    if 'CC(C)C[C@H]' in segment or 'CC(C)C[C@@H]' in segment:  
        return ('Leu', modifications)
    if '[C@H](CC(C)C)' in segment or '[C@@H](CC(C)C)' in segment:  
        return ('Leu', modifications)
    if 'C(C)C' in segment and not any(pat in segment for pat in ['CC(C)C', 'C(C)C[C@H]', 'C(C)C[C@@H]']):
        return ('Val', modifications)
    if 'C(C)C[C@H]' in segment or 'C(C)C[C@@H]' in segment:  
        return ('Ile', modifications)
        
    # Small/polar amino acids
    if ('[C@H](C)' in segment or '[C@@H](C)' in segment) and 'C(C)C' not in segment:
        return ('Ala', modifications)
    if '[C@H](CO)' in segment:
        return ('Ser', modifications)
    if '[C@H](C(C)O)' in segment or '[C@@H](C(C)O)' in segment:
        return ('Thr', modifications)
    if '[C@H]' in segment and not any(pat in segment for pat in ['C(C)', 'CC', 'O', 'N', 'S']):
        return ('Gly', modifications)
        
    # Rest of amino acids remain the same...
    # [Previous code for other amino acids]
    
    return (None, modifications)
def parse_peptide(smiles):
    """
    Parse peptide sequence with enhanced Proline recognition
    """
    # Split on peptide bonds while preserving cycle numbers
    bond_pattern = r'(NC\(=O\)|N\(C\)C\(=O\)|N\dC\(=O\)|OC\(=O\))'
    segments = re.split(bond_pattern, smiles)
    segments = [s for s in segments if s]
    
    sequence = []
    i = 0
    while i < len(segments):
        segment = segments[i]
        next_segment = segments[i+1] if i+1 < len(segments) else None
        prev_segment = segments[i-1] if i > 0 else None
        
        # Skip pure bond patterns
        if re.match(r'.*C\(=O\)$', segment):
            i += 1
            continue
            
        residue, modifications = identify_residue(segment, next_segment, prev_segment)
        if residue:
            # Format residue with modifications
            formatted_residue = residue
            if modifications:
                formatted_residue += f"({','.join(modifications)})"
            sequence.append(formatted_residue)
        
        i += 1
    
    is_cyclic = is_cyclic_peptide(smiles)
    
    # Print debug information
    print("\nDetailed Analysis:")
    print("Segments:", segments)
    print("Found sequence:", sequence)
    
    # Format the final sequence
    if is_cyclic:
        return f"cyclo({'-'.join(sequence)})"
    return '-'.join(sequence)

def is_cyclic_peptide(smiles):
    """
    Determine if SMILES represents a cyclic peptide by checking:
    1. Proper cycle number pairing
    2. Presence of peptide bonds between cycle points
    3. Distinguishing between aromatic rings and peptide cycles
    """
    cycle_info = {}
    
    # Find all cycle numbers and their contexts
    for match in re.finditer(r'(\w{3})?(\d)(\w{3})?', smiles):
        number = match.group(2)
        pre_context = match.group(1) or ''
        post_context = match.group(3) or ''
        position = match.start(2)
        
        if number not in cycle_info:
            cycle_info[number] = []
        cycle_info[number].append({
            'position': position,
            'pre_context': pre_context,
            'post_context': post_context,
            'full_context': smiles[max(0, position-3):min(len(smiles), position+4)]
        })
    
    # Check each cycle
    peptide_cycles = []
    aromatic_cycles = []
    
    for number, occurrences in cycle_info.items():
        if len(occurrences) != 2:  # Must have exactly 2 occurrences
            continue
            
        start, end = occurrences[0]['position'], occurrences[1]['position']
        
        # Get the segment between cycle points
        segment = smiles[start:end+1]
        clean_segment = remove_nested_branches(segment)
        
        # Check if this is an aromatic ring
        is_aromatic = any(context['full_context'].count('c') >= 2 for context in occurrences)
        
        # Check if this is a peptide cycle
        has_peptide_bond = 'NC(=O)' in segment or 'N2C(=O)' in segment
        
        if is_aromatic:
            aromatic_cycles.append(number)
        elif has_peptide_bond:
            peptide_cycles.append(number)
    
    return len(peptide_cycles) > 0, peptide_cycles, aromatic_cycles

def analyze_single_smiles(smiles):
    """Analyze a single SMILES string"""
    try:
        is_cyclic, peptide_cycles, aromatic_cycles = is_cyclic_peptide(smiles)
        sequence = parse_peptide(smiles)
        
        details = {
            'SMILES': smiles,
            'Sequence': sequence,
            'Is Cyclic': 'Yes' if is_cyclic else 'No',
            'Peptide Cycles': ', '.join(peptide_cycles) if peptide_cycles else 'None',
            'Aromatic Cycles': ', '.join(aromatic_cycles) if aromatic_cycles else 'None'
        }
        return details
        
    except Exception as e:
        return {
            'SMILES': smiles,
            'Sequence': f'Error: {str(e)}',
            'Is Cyclic': 'Error',
            'Peptide Cycles': 'Error',
            'Aromatic Cycles': 'Error'
        }

def process_input(smiles_input=None, file_obj=None):
    """Process either direct SMILES input or file input"""
    results = []
    
    # Handle direct SMILES input
    if smiles_input:
        result = analyze_single_smiles(smiles_input.strip())
        results.append(result)
    
    # Handle file input
    if file_obj is not None:
        content = file_obj.decode('utf-8')
        for line in StringIO(content):
            smiles = line.strip()
            if smiles:  # Skip empty lines
                result = analyze_single_smiles(smiles)
                results.append(result)
    
    # Create formatted output
    output_text = ""
    for i, result in enumerate(results, 1):
        output_text += f"Entry {i}:\n"
        output_text += f"SMILES: {result['SMILES']}\n"
        output_text += f"Sequence: {result['Sequence']}\n"
        output_text += f"Is Cyclic: {result['Is Cyclic']}\n"
        output_text += f"Peptide Cycles: {result['Peptide Cycles']}\n"
        output_text += f"Aromatic Cycles: {result['Aromatic Cycles']}\n"
        output_text += "-" * 50 + "\n"
    
    return output_text

# Create Gradio interface
iface = gr.Interface(
    fn=process_input,
    inputs=[
        gr.Textbox(
            label="Enter SMILES string",
            placeholder="Enter SMILES notation of peptide...",
            lines=2
        ),
        gr.File(
            label="Or upload a text file with SMILES",
            file_types=[".txt"],
            type="binary"
        )
    ],
    outputs=gr.Textbox(
        label="Analysis Results",
        lines=10
    ),
    title="Peptide Structure Analyzer",
    description="""
    Analyze peptide structures from SMILES notation to:
    1. Determine if the peptide is cyclic
    2. Identify peptide cycles vs aromatic rings
    3. Parse the amino acid sequence
    
    Input: Either enter a SMILES string directly or upload a text file with multiple SMILES (one per line)
    """,
    examples=[
        # Example cyclic peptide with Proline
        ["CC(C)C[C@@H]1NC(=O)[C@@H]2CCCN2C(=O)[C@@H](CC(C)C)NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@H](C)NC(=O)[C@H](Cc2ccccc2)NC1=O", None],
        # Example cyclic peptide with ester bond
        ["CC(C)C[C@@H]1OC(=O)[C@H](C)NC(=O)[C@H](C(C)C)OC(=O)[C@H](C)N(C)C(=O)[C@@H](C)NC(=O)[C@@H](Cc2ccccc2)N(C)C1=O", None]
    ],
    allow_flagging="never"
)

# Launch the app
if __name__ == "__main__":
    iface.launch()