Spaces:
Running
Running
File size: 54,343 Bytes
45d6af3 b871fd6 bb04c63 a953180 6124ce7 a953180 6a8393c d7b6536 6a8393c a953180 d7b6536 a953180 6a8393c b871fd6 a953180 d7b6536 a9bf7b9 d7b6536 a9bf7b9 d7b6536 a9bf7b9 d7b6536 a9bf7b9 a953180 12d0eea 6a8393c a953180 12d0eea a953180 12d0eea d7b6536 a953180 d7b6536 a953180 d7b6536 a953180 45d6af3 a953180 45d6af3 a953180 6a8393c a953180 d7b6536 a953180 12d0eea a953180 d7b6536 a953180 45d6af3 a953180 45d6af3 d7b6536 a953180 d7b6536 a953180 84bbd6a d7b6536 84bbd6a d7b6536 84bbd6a d7b6536 84bbd6a a953180 45d6af3 a953180 7d307ba a953180 d7b6536 a953180 d7b6536 45d6af3 d7b6536 a953180 1b33af5 b871fd6 a21a9e8 b871fd6 4f4356d b871fd6 4f4356d b871fd6 4f4356d b871fd6 4f4356d 4f0aaef b871fd6 4f4356d b871fd6 4f4356d b871fd6 1b33af5 260f3d0 1b33af5 f5f80ba 1b33af5 260f3d0 3226415 260f3d0 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 260f3d0 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 260f3d0 3226415 260f3d0 3226415 260f3d0 3226415 260f3d0 b871fd6 3226415 260f3d0 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 d7b6536 2e65f0b d7b6536 2e65f0b d7b6536 a953180 bb04c63 45d6af3 b871fd6 a953180 b871fd6 d7b6536 b871fd6 d7b6536 bb04c63 d7b6536 bb04c63 d7b6536 bb04c63 d7b6536 a953180 82fb410 a953180 82fb410 a953180 2e65f0b b871fd6 9e0fff0 b871fd6 9e0fff0 b871fd6 2e65f0b a953180 82fb410 2e65f0b a953180 2e65f0b a9bf7b9 b871fd6 6239bbc bb04c63 6239bbc bb04c63 b871fd6 bb04c63 45d6af3 b871fd6 a953180 1b33af5 a953180 1b33af5 b871fd6 1b33af5 b871fd6 a953180 b871fd6 a953180 82fb410 a953180 82fb410 a953180 a9bf7b9 b871fd6 a953180 b871fd6 1b33af5 b871fd6 260f3d0 45d6af3 6a8393c a7360b6 d7b6536 a628e27 d7b6536 a7360b6 45d6af3 b871fd6 a7360b6 eded448 a7360b6 b871fd6 45d6af3 b871fd6 d7b6536 45d6af3 a0cad87 1b33af5 12d0eea 45d6af3 e1d6be0 45d6af3 0f570bc e1d6be0 45d6af3 9634967 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 |
import gradio as gr
import re
import pandas as pd
from io import StringIO
import rdkit
from rdkit import Chem
from rdkit.Chem import AllChem, Draw
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from io import BytesIO
import tempfile
import re
import os
from rdkit import Chem
class PeptideAnalyzer:
def __init__(self):
self.bond_patterns = [
(r'OC\(=O\)', 'ester'), # Ester bond
(r'N\(C\)C\(=O\)', 'n_methyl'), # N-methylated peptide bond
(r'N[0-9]C\(=O\)', 'proline'), # Proline peptide bond
(r'NC\(=O\)', 'peptide'), # Standard peptide bond
(r'C\(=O\)N\(C\)', 'n_methyl_reverse'), # Reverse N-methylated
(r'C\(=O\)N[12]?', 'peptide_reverse') # Reverse peptide bond
]
# Three to one letter code mapping
self.three_to_one = {
'Ala': 'A', 'Cys': 'C', 'Asp': 'D', 'Glu': 'E',
'Phe': 'F', 'Gly': 'G', 'His': 'H', 'Ile': 'I',
'Lys': 'K', 'Leu': 'L', 'Met': 'M', 'Asn': 'N',
'Pro': 'P', 'Gln': 'Q', 'Arg': 'R', 'Ser': 'S',
'Thr': 'T', 'Val': 'V', 'Trp': 'W', 'Tyr': 'Y'
}
def is_peptide(self, smiles):
"""Check if the SMILES represents a peptide structure"""
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return False
# Look for peptide bonds: NC(=O) pattern
peptide_bond_pattern = Chem.MolFromSmarts('[NH][C](=O)')
if mol.HasSubstructMatch(peptide_bond_pattern):
return True
# Look for N-methylated peptide bonds: N(C)C(=O) pattern
n_methyl_pattern = Chem.MolFromSmarts('[N;H0;$(NC)](C)[C](=O)')
if mol.HasSubstructMatch(n_methyl_pattern):
return True
return False
def is_cyclic(self, smiles):
"""Improved cyclic peptide detection"""
# Check for C-terminal carboxyl
if smiles.endswith('C(=O)O'):
return False, [], []
# Find all numbers used in ring closures
ring_numbers = re.findall(r'(?:^|[^c])[0-9](?=[A-Z@\(\)])', smiles)
# Find aromatic ring numbers
aromatic_matches = re.findall(r'c[0-9](?:ccccc|c\[nH\]c)[0-9]', smiles)
aromatic_cycles = []
for match in aromatic_matches:
numbers = re.findall(r'[0-9]', match)
aromatic_cycles.extend(numbers)
# Numbers that aren't part of aromatic rings are peptide cycles
peptide_cycles = [n for n in ring_numbers if n not in aromatic_cycles]
is_cyclic = len(peptide_cycles) > 0 and not smiles.endswith('C(=O)O')
return is_cyclic, peptide_cycles, aromatic_cycles
def split_on_bonds(self, smiles):
"""Split SMILES into segments with simplified Pro handling"""
positions = []
used = set()
# Find Gly pattern first
gly_pattern = r'NCC\(=O\)'
for match in re.finditer(gly_pattern, smiles):
if not any(p in range(match.start(), match.end()) for p in used):
positions.append({
'start': match.start(),
'end': match.end(),
'type': 'gly',
'pattern': match.group()
})
used.update(range(match.start(), match.end()))
for pattern, bond_type in self.bond_patterns:
for match in re.finditer(pattern, smiles):
if not any(p in range(match.start(), match.end()) for p in used):
positions.append({
'start': match.start(),
'end': match.end(),
'type': bond_type,
'pattern': match.group()
})
used.update(range(match.start(), match.end()))
# Sort by position
positions.sort(key=lambda x: x['start'])
# Create segments
segments = []
if positions:
# First segment
if positions[0]['start'] > 0:
segments.append({
'content': smiles[0:positions[0]['start']],
'bond_after': positions[0]['pattern']
})
# Process segments
for i in range(len(positions)-1):
current = positions[i]
next_pos = positions[i+1]
if current['type'] == 'gly':
segments.append({
'content': 'NCC(=O)',
'bond_before': positions[i-1]['pattern'] if i > 0 else None,
'bond_after': next_pos['pattern']
})
else:
content = smiles[current['end']:next_pos['start']]
if content:
segments.append({
'content': content,
'bond_before': current['pattern'],
'bond_after': next_pos['pattern']
})
# Last segment
if positions[-1]['end'] < len(smiles):
segments.append({
'content': smiles[positions[-1]['end']:],
'bond_before': positions[-1]['pattern']
})
return segments
def clean_terminal_carboxyl(self, segment):
"""Remove C-terminal carboxyl only if it's the true terminus"""
content = segment['content']
# Only clean if:
# 1. Contains C(=O)O
# 2. No bond_after exists (meaning it's the last segment)
# 3. C(=O)O is at the end of the content
if 'C(=O)O' in content and not segment.get('bond_after'):
print('recognized?')
# Remove C(=O)O pattern regardless of position
cleaned = re.sub(r'\(C\(=O\)O\)', '', content)
# Remove any leftover empty parentheses
cleaned = re.sub(r'\(\)', '', cleaned)
print(cleaned)
return cleaned
return content
def identify_residue(self, segment):
"""Identify residue with Pro reconstruction"""
# Only clean terminal carboxyl if this is the last segment
content = self.clean_terminal_carboxyl(segment)
mods = self.get_modifications(segment)
# UAA pattern matching section - before regular residues
# Phenylglycine and derivatives
if 'c1ccccc1' in content:
if '[C@@H](c1ccccc1)' in content or '[C@H](c1ccccc1)' in content:
return '4', mods # Base phenylglycine
# 4-substituted phenylalanines
if 'Cc1ccc' in content:
if 'OMe' in content or 'OCc1ccc' in content:
return '0A1', mods # 4-methoxy-Phenylalanine
elif 'Clc1ccc' in content:
return '200', mods # 4-chloro-Phenylalanine
elif 'Brc1ccc' in content:
return '4BF', mods # 4-Bromo-phenylalanine
elif 'C#Nc1ccc' in content:
return '4CF', mods # 4-cyano-phenylalanine
elif 'Ic1ccc' in content:
return 'PHI', mods # 4-Iodo-phenylalanine
elif 'Fc1ccc' in content:
return 'PFF', mods # 4-Fluoro-phenylalanine
# Modified tryptophans
if 'c[nH]c2' in content:
if 'Oc2cccc2' in content:
return '0AF', mods # 7-hydroxy-tryptophan
elif 'Fc2cccc2' in content:
return '4FW', mods # 4-fluoro-tryptophan
elif 'Clc2cccc2' in content:
return '6CW', mods # 6-chloro-tryptophan
elif 'Brc2cccc2' in content:
return 'BTR', mods # 6-bromo-tryptophan
elif 'COc2cccc2' in content:
return 'MOT5', mods # 5-Methoxy-tryptophan
elif 'Cc2cccc2' in content:
return 'MTR5', mods # 5-Methyl-tryptophan
# Special amino acids
if 'CC(C)(C)[C@@H]' in content or 'CC(C)(C)[C@H]' in content:
return 'BUG', mods # Tertleucine
if 'CCCNC(=N)N' in content:
return 'CIR', mods # Citrulline
if '[SeH]' in content:
return 'CSE', mods # Selenocysteine
if '[NH3]CC[C@@H]' in content or '[NH3]CC[C@H]' in content:
return 'DAB', mods # Diaminobutyric acid
if 'C1CCCCC1' in content:
if 'C1CCCCC1[C@@H]' in content or 'C1CCCCC1[C@H]' in content:
return 'CHG', mods # Cyclohexylglycine
elif 'C1CCCCC1C[C@@H]' in content or 'C1CCCCC1C[C@H]' in content:
return 'ALC', mods # 3-cyclohexyl-alanine
# Naphthalene derivatives
if 'c1cccc2c1cccc2' in content:
if 'c1cccc2c1cccc2[C@@H]' in content or 'c1cccc2c1cccc2[C@H]' in content:
return 'NAL', mods # 2-Naphthyl-alanine
# Heteroaromatic derivatives
if 'c1cncc' in content:
return 'PYR4', mods # 3-(4-Pyridyl)-alanine
if 'c1cscc' in content:
return 'THA3', mods # 3-(3-thienyl)-alanine
if 'c1nnc' in content:
return 'TRZ4', mods # 3-(1,2,4-Triazol-1-yl)-alanine
# Modified serines and threonines
if 'OP(O)(O)O' in content:
if '[C@@H](COP' in content or '[C@H](COP' in content:
return 'SEP', mods # phosphoserine
elif '[C@@H](OP' in content or '[C@H](OP' in content:
return 'TPO', mods # phosphothreonine
# Specialized ring systems
if 'c1c2ccccc2cc2c1cccc2' in content:
return 'ANTH', mods # 3-(9-anthryl)-alanine
if 'c1csc2c1cccc2' in content:
return 'BTH3', mods # 3-(3-benzothienyl)-alanine
if '[C@]12C[C@H]3C[C@@H](C2)C[C@@H](C1)C3' in content:
return 'ADAM', mods # Adamanthane
# Fluorinated derivatives
if 'FC(F)(F)' in content:
if 'CC(F)(F)F' in content:
return 'FLA', mods # Trifluoro-alanine
if 'C(F)(F)F)c1' in content:
if 'c1ccccc1C(F)(F)F' in content:
return 'TFG2', mods # 2-(Trifluoromethyl)-phenylglycine
if 'c1cccc(c1)C(F)(F)F' in content:
return 'TFG3', mods # 3-(Trifluoromethyl)-phenylglycine
if 'c1ccc(cc1)C(F)(F)F' in content:
return 'TFG4', mods # 4-(Trifluoromethyl)-phenylglycine
# Multiple halogen patterns
if 'F' in content and 'c1' in content:
if 'c1ccc(c(c1)F)F' in content:
return 'F2F', mods # 3,4-Difluoro-phenylalanine
if 'cc(F)cc(c1)F' in content:
return 'WFP', mods # 3,5-Difluoro-phenylalanine
if 'Cl' in content and 'c1' in content:
if 'c1ccc(cc1Cl)Cl' in content:
return 'CP24', mods # 2,4-dichloro-phenylalanine
if 'c1ccc(c(c1)Cl)Cl' in content:
return 'CP34', mods # 3,4-dichloro-phenylalanine
# Hydroxy and amino derivatives
if 'O' in content and 'c1' in content:
if 'c1cc(O)cc(c1)O' in content:
return '3FG', mods # (2s)-amino(3,5-dihydroxyphenyl)-ethanoic acid
if 'c1ccc(c(c1)O)O' in content:
return 'DAH', mods # 3,4-Dihydroxy-phenylalanine
# Cyclic amino acids
if 'C1CCCC1' in content:
return 'CPA3', mods # 3-Cyclopentyl-alanine
if 'C1CCCCC1' in content:
if 'CC1CCCCC1' in content:
return 'ALC', mods # 3-cyclohexyl-alanine
else:
return 'CHG', mods # Cyclohexylglycine
# Chain-length variants
if 'CCC[C@@H]' in content or 'CCC[C@H]' in content:
return 'NLE', mods # Norleucine
if 'CC[C@@H]' in content or 'CC[C@H]' in content:
if not any(x in content for x in ['CC(C)', 'COC', 'CN(']):
return 'ABA', mods # 2-Aminobutyric acid
# Modified histidines
if 'c1cnc' in content:
if '[C@@H]1CN[C@@H](N1)F' in content:
return '2HF', mods # 2-fluoro-l-histidine
if 'c1cnc([nH]1)F' in content:
return '2HF1', mods # 2-fluoro-l-histidine variant
if 'c1c[nH]c(n1)F' in content:
return '2HF2', mods # 2-fluoro-l-histidine variant
# Sulfur and selenium containing
if '[SeH]' in content:
return 'CSE', mods # Selenocysteine
if 'S' in content:
if 'CSCc1ccccc1' in content:
return 'BCS', mods # benzylcysteine
if 'CCSC' in content:
return 'ESC', mods # Ethionine
if 'CCS' in content:
return 'HCS', mods # homocysteine
# Additional modifications
if 'CN=[N]=N' in content:
return 'AZDA', mods # azido-alanine
if '[NH]=[C](=[NH2])=[NH2]' in content:
if 'CCC[NH]=' in content:
return 'AGM', mods # 5-methyl-arginine
if 'CC[NH]=' in content:
return 'GDPR', mods # 2-Amino-3-guanidinopropionic acid
if 'CCON' in content:
return 'CAN', mods # canaline
if '[C@@H]1C=C[C@@H](C=C1)' in content:
return 'ACZ', mods # cis-amiclenomycin
if 'CCC(=O)[NH3]' in content:
return 'ONL', mods # 5-oxo-l-norleucine
if 'c1ccncc1' in content:
return 'PYR4', mods # 3-(4-Pyridyl)-alanine
if 'c1ccco1' in content:
return 'FUA2', mods # (2-furyl)-alanine
if 'c1ccc' in content:
if 'c1ccc(cc1)c1ccccc1' in content:
return 'BIF', mods # 4,4-biphenylalanine
if 'c1ccc(cc1)C(=O)c1ccccc1' in content:
return 'PBF', mods # 4-benzoyl-phenylalanine
if 'c1ccc(cc1)C(C)(C)C' in content:
return 'TBP4', mods # 4-tert-butyl-phenylalanine
if 'c1ccc(cc1)[C](=[NH2])=[NH2]' in content:
return '0BN', mods # 4-carbamimidoyl-l-phenylalanine
if 'c1cccc(c1)[C](=[NH2])=[NH2]' in content:
return 'APM', mods # m-amidinophenyl-3-alanine
# Multiple hydroxy patterns
if 'O' in content:
if '[C@H]([C@H](C)O)O' in content:
return 'ILX', mods # 4,5-dihydroxy-isoleucine
if '[C@H]([C@@H](C)O)O' in content:
return 'ALO', mods # Allo-threonine
if '[C@H](COP(O)(O)O)' in content:
return 'SEP', mods # phosphoserine
if '[C@H]([C@@H](C)OP(O)(O)O)' in content:
return 'TPO', mods # phosphothreonine
if '[C@H](c1ccc(O)cc1)O' in content:
return 'OMX', mods # (betar)-beta-hydroxy-l-tyrosine
if '[C@H](c1ccc(c(Cl)c1)O)O' in content:
return 'OMY', mods # (betar)-3-chloro-beta-hydroxy-l-tyrosine
# Heterocyclic patterns
if 'n1' in content:
if 'n1cccn1' in content:
return 'PYZ1', mods # 3-(1-Pyrazolyl)-alanine
if 'n1nncn1' in content:
return 'TEZA', mods # 3-(2-Tetrazolyl)-alanine
if 'c2c(n1)cccc2' in content:
return 'QU32', mods # 3-(2-Quinolyl)-alanine
if 'c1cnc2c(c1)cccc2' in content:
return 'QU33', mods # 3-(3-quinolyl)-alanine
if 'c1ccnc2c1cccc2' in content:
return 'QU34', mods # 3-(4-quinolyl)-alanine
if 'c1ccc2c(c1)nccc2' in content:
return 'QU35', mods # 3-(5-Quinolyl)-alanine
if 'c1ccc2c(c1)cncc2' in content:
return 'QU36', mods # 3-(6-Quinolyl)-alanine
if 'c1cnc2c(n1)cccc2' in content:
return 'QX32', mods # 3-(2-quinoxalyl)-alanine
# Multiple nitrogen patterns
if 'N' in content:
if '[NH3]CC[C@@H]' in content:
return 'DAB', mods # Diaminobutyric acid
if '[NH3]C[C@@H]' in content:
return 'DPP', mods # 2,3-Diaminopropanoic acid
if '[NH3]CCCCCC[C@@H]' in content:
return 'HHK', mods # (2s)-2,8-diaminooctanoic acid
if 'CCC[NH]=[C](=[NH2])=[NH2]' in content:
return 'GBUT', mods # 2-Amino-4-guanidinobutryric acid
if '[NH]=[C](=S)=[NH2]' in content:
return 'THIC', mods # Thio-citrulline
# Chain modified amino acids
if 'CC' in content:
if 'CCCC[C@@H]' in content:
return 'AHP', mods # 2-Aminoheptanoic acid
if 'CCC([C@@H])(C)C' in content:
return 'I2M', mods # 3-methyl-l-alloisoleucine
if 'CC[C@H]([C@@H])C' in content:
return 'IIL', mods # Allo-Isoleucine
if '[C@H](CCC(C)C)' in content:
return 'HLEU', mods # Homoleucine
if '[C@@H]([C@@H](C)O)C' in content:
return 'HLU', mods # beta-hydroxyleucine
# Modified glutamate/aspartate patterns
if '[C@@H]' in content:
if '[C@@H](C[C@@H](F))' in content:
return 'FGA4', mods # 4-Fluoro-glutamic acid
if '[C@@H](C[C@@H](O))' in content:
return '3GL', mods # 4-hydroxy-glutamic-acid
if '[C@@H](C[C@H](C))' in content:
return 'LME', mods # (3r)-3-methyl-l-glutamic acid
if '[C@@H](CC[C@H](C))' in content:
return 'MEG', mods # (3s)-3-methyl-l-glutamic acid
# Sulfur and selenium modifications
if 'S' in content:
if 'SCC[C@@H]' in content:
return 'HSER', mods # homoserine
if 'SCCN' in content:
return 'SLZ', mods # thialysine
if 'SC(=O)' in content:
return 'CSA', mods # s-acetonylcysteine
if '[S@@](=O)' in content:
return 'SME', mods # Methionine sulfoxide
if 'S(=O)(=O)' in content:
return 'OMT', mods # Methionine sulfone
# Double bond containing
if 'C=' in content:
if 'C=C[C@@H]' in content:
return '2AG', mods # 2-Allyl-glycine
if 'C=C[C@@H]' in content:
return 'LVG', mods # vinylglycine
if 'C=Cc1ccccc1' in content:
return 'STYA', mods # Styrylalanine
# Special cases
if '[C@@H]1Cc2c(C1)cccc2' in content:
return 'IGL', mods # alpha-amino-2-indanacetic acid
if '[C](=[C](=O)=O)=O' in content:
return '26P', mods # 2-amino-6-oxopimelic acid
if '[C](=[C](=O)=O)=C' in content:
return '2NP', mods # l-2-amino-6-methylene-pimelic acid
if 'c2cnc[nH]2' in content:
return 'HIS', mods # histidine core
if 'c1cccc2c1cc(O)cc2' in content:
return 'NAO1', mods # 5-hydroxy-1-naphthalene
if 'c1ccc2c(c1)cc(O)cc2' in content:
return 'NAO2', mods # 6-hydroxy-2-naphthalene
# Proline (P) - flexible ring numbers
if any([
# Check for any ring number in bond patterns
(segment.get('bond_after', '').startswith(f'N{n}C(=O)') and 'CCC' in content and
any(f'[C@@H]{n}' in content or f'[C@H]{n}' in content for n in '123456789'))
for n in '123456789'
]) or any([
# Check ending patterns with any ring number
(f'CCCN{n}' in content and content.endswith('=O') and
any(f'[C@@H]{n}' in content or f'[C@H]{n}' in content for n in '123456789'))
for n in '123456789'
]) or any([
# Handle CCC[C@H]n patterns
(content == f'CCC[C@H]{n}' and segment.get('bond_before', '').startswith(f'C(=O)N{n}')) or
(content == f'CCC[C@@H]{n}' and segment.get('bond_before', '').startswith(f'C(=O)N{n}')) or
# N-terminal Pro with any ring number
(f'N{n}CCC[C@H]{n}' in content) or
(f'N{n}CCC[C@@H]{n}' in content)
for n in '123456789'
]):
return 'Pro', mods
# Tryptophan (W) - more specific indole pattern
if re.search(r'c[0-9]c\[nH\]c[0-9]ccccc[0-9][0-9]', content) and \
'c[nH]c' in content.replace(' ', ''):
return 'Trp', mods
# Lysine (K) - both patterns
if '[C@@H](CCCCN)' in content or '[C@H](CCCCN)' in content:
return 'Lys', mods
# Arginine (R) - both patterns
if '[C@@H](CCCNC(=N)N)' in content or '[C@H](CCCNC(=N)N)' in content:
return 'Arg', mods
if ('C[C@H](CCCC)' in content or 'C[C@@H](CCCC)' in content) and 'CC(C)' not in content:
return 'Nle', mods
# Ornithine (Orn) - 3-carbon chain with NH2
if ('C[C@H](CCCN)' in content or 'C[C@@H](CCCN)' in content) and 'CC(C)' not in content:
return 'Orn', mods
# 2-Naphthylalanine (2Nal) - distinct from Phe pattern
if ('Cc3cc2ccccc2c3' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
return '2Nal', mods
# Cyclohexylalanine (Cha) - already in your code but moved here for clarity
if 'N2CCCCC2' in content or 'CCCCC2' in content:
return 'Cha', mods
# Aminobutyric acid (Abu) - 2-carbon chain
if ('C[C@H](CC)' in content or 'C[C@@H](CC)' in content) and not any(p in content for p in ['CC(C)', 'CCCC', 'CCC(C)']):
return 'Abu', mods
# Pipecolic acid (Pip) - 6-membered ring like Pro
if ('N3CCCCC3' in content or 'CCCCC3' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
return 'Pip', mods
# Cyclohexylglycine (Chg) - direct cyclohexyl without CH2
if ('C[C@H](C1CCCCC1)' in content or 'C[C@@H](C1CCCCC1)' in content):
return 'Chg', mods
# 4-Fluorophenylalanine (4F-Phe)
if ('Cc2ccc(F)cc2' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
return '4F-Phe', mods
# Regular residue identification
if ('NCC(=O)' in content) or (content == 'C'):
# Middle case - between bonds
if segment.get('bond_before') and segment.get('bond_after'):
if ('C(=O)N' in segment['bond_before'] or 'C(=O)N(C)' in segment['bond_before']):
return 'Gly', mods
# Terminal case - at the end
elif segment.get('bond_before') and segment.get('bond_before').startswith('C(=O)N'):
return 'Gly', mods
if 'CC(C)C[C@H]' in content or 'CC(C)C[C@@H]' in content:
return 'Leu', mods
if '[C@@H](CC(C)C)' in content or '[C@H](CC(C)C)' in content:
return 'Leu', mods
if '[C@@H]([C@@H](C)O)' in content or '[C@H]([C@H](C)O)' in content:
return 'Thr', mods
if '[C@H](Cc2ccccc2)' in content or '[C@@H](Cc2ccccc2)' in content:
return 'Phe', mods
if ('[C@H](C(C)C)' in content or # With outer parentheses
'[C@@H](C(C)C)' in content or # With outer parentheses
'[C@H]C(C)C' in content or # Without outer parentheses
'[C@@H]C(C)C' in content): # Without outer parentheses
if not any(p in content for p in ['CC(C)C[C@H]', 'CC(C)C[C@@H]']): # Still check not Leu
return 'Val', mods
if '[C@H](COC(C)(C)C)' in content or '[C@@H](COC(C)(C)C)' in content:
return 'O-tBu', mods
if any([
'CC[C@H](C)' in content,
'CC[C@@H](C)' in content,
'C(C)C[C@H]' in content and 'CC(C)C' not in content,
'C(C)C[C@@H]' in content and 'CC(C)C' not in content
]):
return 'Ile', mods
if ('[C@H](C)' in content or '[C@@H](C)' in content):
if not any(p in content for p in ['C(C)C', 'COC', 'CN(', 'C(C)O', 'CC[C@H]', 'CC[C@@H]']):
return 'Ala', mods
# Tyrosine (Tyr) - 4-hydroxybenzyl side chain
if re.search(r'Cc[0-9]ccc\(O\)cc[0-9]', content):
return 'Tyr', mods
# Serine (Ser) - Hydroxymethyl side chain
if '[C@H](CO)' in content or '[C@@H](CO)' in content:
if not ('C(C)O' in content or 'COC' in content):
return 'Ser', mods
# Threonine (Thr) - 1-hydroxyethyl side chain
if '[C@@H]([C@@H](C)O)' in content or '[C@H]([C@H](C)O)' in content or '[C@@H](C)O' in content or '[C@H](C)O' in content:
return 'Thr', mods
# Cysteine (Cys) - Thiol side chain
if '[C@H](CS)' in content or '[C@@H](CS)' in content:
return 'Cys', mods
# Methionine (Met) - Methylthioethyl side chain
if ('C[C@H](CCSC)' in content or 'C[C@@H](CCSC)' in content):
return 'Met', mods
# Asparagine (Asn) - Carbamoylmethyl side chain
if ('CC(=O)N' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
return 'Asn', mods
# Glutamine (Gln) - Carbamoylethyl side chain
if ('CCC(=O)N' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
return 'Gln', mods
# Aspartic acid (Asp) - Carboxymethyl side chain
if ('CC(=O)O' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
return 'Asp', mods
# Glutamic acid (Glu) - Carboxyethyl side chain
if ('CCC(=O)O' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
return 'Glu', mods
# Arginine (Arg) - 3-guanidinopropyl side chain
if ('CCCNC(=N)N' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
return 'Arg', mods
# Histidine (His) - Imidazole side chain
if ('Cc2cnc[nH]2' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
return 'His', mods
return None, mods
def get_modifications(self, segment):
"""Get modifications based on bond types"""
mods = []
if segment.get('bond_after'):
if 'N(C)' in segment['bond_after'] or segment['bond_after'].startswith('C(=O)N(C)'):
mods.append('N-Me')
if 'OC(=O)' in segment['bond_after']:
mods.append('O-linked')
return mods
def analyze_structure(self, smiles):
"""Main analysis function with debug output"""
print("\nAnalyzing structure:", smiles)
# Split into segments
segments = self.split_on_bonds(smiles)
print("\nSegment Analysis:")
sequence = []
for i, segment in enumerate(segments):
print(f"\nSegment {i}:")
print(f"Content: {segment['content']}")
print(f"Bond before: {segment.get('bond_before', 'None')}")
print(f"Bond after: {segment.get('bond_after', 'None')}")
residue, mods = self.identify_residue(segment)
if residue:
if mods:
sequence.append(f"{residue}({','.join(mods)})")
else:
sequence.append(residue)
print(f"Identified as: {residue}")
print(f"Modifications: {mods}")
else:
print(f"Warning: Could not identify residue in segment: {segment['content']}")
# Check if cyclic
is_cyclic, peptide_cycles, aromatic_cycles = self.is_cyclic(smiles)
three_letter = '-'.join(sequence)
one_letter = ''.join(self.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence)
if is_cyclic:
three_letter = f"cyclo({three_letter})"
one_letter = f"cyclo({one_letter})"
print(f"\nFinal sequence: {three_letter}")
print(f"One-letter code: {one_letter}")
print(f"Is cyclic: {is_cyclic}")
#print(f"Peptide cycles: {peptide_cycles}")
#print(f"Aromatic cycles: {aromatic_cycles}")
return {
'three_letter': three_letter,
'one_letter': one_letter,
'is_cyclic': is_cyclic
}
"""
def annotate_cyclic_structure(mol, sequence):
'''Create annotated 2D structure with clear, non-overlapping residue labels'''
# Generate 2D coordinates
# Generate 2D coordinates
AllChem.Compute2DCoords(mol)
# Create drawer with larger size for annotations
drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000) # Even larger size
# Get residue list and reverse it to match structural representation
if sequence.startswith('cyclo('):
residues = sequence[6:-1].split('-')
else:
residues = sequence.split('-')
residues = list(reversed(residues)) # Reverse the sequence
# Draw molecule first to get its bounds
drawer.drawOptions().addAtomIndices = False
drawer.DrawMolecule(mol)
drawer.FinishDrawing()
# Convert to PIL Image
img = Image.open(BytesIO(drawer.GetDrawingText()))
draw = ImageDraw.Draw(img)
try:
# Try to use DejaVuSans as it's commonly available on Linux systems
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60)
small_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60)
except OSError:
try:
# Fallback to Arial if available (common on Windows)
font = ImageFont.truetype("arial.ttf", 60)
small_font = ImageFont.truetype("arial.ttf", 60)
except OSError:
# If no TrueType fonts are available, fall back to default
print("Warning: TrueType fonts not available, using default font")
font = ImageFont.load_default()
small_font = ImageFont.load_default()
# Get molecule bounds
conf = mol.GetConformer()
positions = []
for i in range(mol.GetNumAtoms()):
pos = conf.GetAtomPosition(i)
positions.append((pos.x, pos.y))
x_coords = [p[0] for p in positions]
y_coords = [p[1] for p in positions]
min_x, max_x = min(x_coords), max(x_coords)
min_y, max_y = min(y_coords), max(y_coords)
# Calculate scaling factors
scale = 150 # Increased scale factor
center_x = 1000 # Image center
center_y = 1000
# Add residue labels in a circular arrangement around the structure
n_residues = len(residues)
radius = 700 # Distance of labels from center
# Start from the rightmost point (3 o'clock position) and go counterclockwise
# Offset by -3 positions to align with structure
offset = 0 # Adjust this value to match the structure alignment
for i, residue in enumerate(residues):
# Calculate position in a circle around the structure
# Start from 0 (3 o'clock) and go counterclockwise
angle = -(2 * np.pi * ((i + offset) % n_residues) / n_residues)
# Calculate label position
label_x = center_x + radius * np.cos(angle)
label_y = center_y + radius * np.sin(angle)
# Draw residue label
text = f"{i+1}. {residue}"
bbox = draw.textbbox((label_x, label_y), text, font=font)
padding = 10
draw.rectangle([bbox[0]-padding, bbox[1]-padding,
bbox[2]+padding, bbox[3]+padding],
fill='white', outline='white')
draw.text((label_x, label_y), text,
font=font, fill='black', anchor="mm")
# Add sequence at the top with white background
seq_text = f"Sequence: {sequence}"
bbox = draw.textbbox((center_x, 100), seq_text, font=small_font)
padding = 10
draw.rectangle([bbox[0]-padding, bbox[1]-padding,
bbox[2]+padding, bbox[3]+padding],
fill='white', outline='white')
draw.text((center_x, 100), seq_text,
font=small_font, fill='black', anchor="mm")
return img
"""
def annotate_cyclic_structure(mol, sequence):
"""Create structure visualization with just the sequence header"""
# Generate 2D coordinates
AllChem.Compute2DCoords(mol)
# Create drawer with larger size for annotations
drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000)
# Draw molecule first
drawer.drawOptions().addAtomIndices = False
drawer.DrawMolecule(mol)
drawer.FinishDrawing()
# Convert to PIL Image
img = Image.open(BytesIO(drawer.GetDrawingText()))
draw = ImageDraw.Draw(img)
try:
small_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60)
except OSError:
try:
small_font = ImageFont.truetype("arial.ttf", 60)
except OSError:
print("Warning: TrueType fonts not available, using default font")
small_font = ImageFont.load_default()
# Add just the sequence header at the top
seq_text = f"Sequence: {sequence}"
bbox = draw.textbbox((1000, 100), seq_text, font=small_font)
padding = 10
draw.rectangle([bbox[0]-padding, bbox[1]-padding,
bbox[2]+padding, bbox[3]+padding],
fill='white', outline='white')
draw.text((1000, 100), seq_text,
font=small_font, fill='black', anchor="mm")
return img
def create_enhanced_linear_viz(sequence, smiles):
"""Create an enhanced linear representation using PeptideAnalyzer"""
analyzer = PeptideAnalyzer() # Create analyzer instance
# Create figure with two subplots
fig = plt.figure(figsize=(15, 10))
gs = fig.add_gridspec(2, 1, height_ratios=[1, 2])
ax_struct = fig.add_subplot(gs[0])
ax_detail = fig.add_subplot(gs[1])
# Parse sequence and get residues
if sequence.startswith('cyclo('):
residues = sequence[6:-1].split('-')
else:
residues = sequence.split('-')
# Get segments using analyzer
segments = analyzer.split_on_bonds(smiles)
# Debug print
print(f"Number of residues: {len(residues)}")
print(f"Number of segments: {len(segments)}")
# Top subplot - Basic structure
ax_struct.set_xlim(0, 10)
ax_struct.set_ylim(0, 2)
num_residues = len(residues)
spacing = 9.0 / (num_residues - 1) if num_residues > 1 else 9.0
# Draw basic structure
y_pos = 1.5
for i in range(num_residues):
x_pos = 0.5 + i * spacing
# Draw amino acid box
rect = patches.Rectangle((x_pos-0.3, y_pos-0.2), 0.6, 0.4,
facecolor='lightblue', edgecolor='black')
ax_struct.add_patch(rect)
# Draw connecting bonds if not the last residue
if i < num_residues - 1:
segment = segments[i] if i < len(segments) else None
if segment:
# Determine bond type from segment info
bond_type = 'ester' if 'O-linked' in segment.get('bond_after', '') else 'peptide'
is_n_methylated = 'N-Me' in segment.get('bond_after', '')
bond_color = 'red' if bond_type == 'ester' else 'black'
linestyle = '--' if bond_type == 'ester' else '-'
# Draw bond line
ax_struct.plot([x_pos+0.3, x_pos+spacing-0.3], [y_pos, y_pos],
color=bond_color, linestyle=linestyle, linewidth=2)
# Add bond type label
mid_x = x_pos + spacing/2
bond_label = f"{bond_type}"
if is_n_methylated:
bond_label += "\n(N-Me)"
ax_struct.text(mid_x, y_pos+0.1, bond_label,
ha='center', va='bottom', fontsize=10,
color=bond_color)
# Add residue label
ax_struct.text(x_pos, y_pos-0.5, residues[i],
ha='center', va='top', fontsize=14)
# Bottom subplot - Detailed breakdown
ax_detail.set_ylim(0, len(segments)+1)
ax_detail.set_xlim(0, 1)
# Create detailed breakdown
segment_y = len(segments) # Start from top
for i, segment in enumerate(segments):
y = segment_y - i
# Check if this is a bond or residue
residue, mods = analyzer.identify_residue(segment)
if residue:
text = f"Residue {i+1}: {residue}"
if mods:
text += f" ({', '.join(mods)})"
color = 'blue'
else:
# Must be a bond
text = f"Bond {i}: "
if 'O-linked' in segment.get('bond_after', ''):
text += "ester"
elif 'N-Me' in segment.get('bond_after', ''):
text += "peptide (N-methylated)"
else:
text += "peptide"
color = 'red'
# Add segment analysis
ax_detail.text(0.05, y, text, fontsize=12, color=color)
ax_detail.text(0.5, y, f"SMILES: {segment.get('content', '')}", fontsize=10, color='gray')
# If cyclic, add connection indicator
if sequence.startswith('cyclo('):
ax_struct.annotate('', xy=(9.5, y_pos), xytext=(0.5, y_pos),
arrowprops=dict(arrowstyle='<->', color='red', lw=2))
ax_struct.text(5, y_pos+0.3, 'Cyclic Connection',
ha='center', color='red', fontsize=14)
# Add titles and adjust layout
ax_struct.set_title("Peptide Structure Overview", pad=20)
ax_detail.set_title("Segment Analysis Breakdown", pad=20)
# Remove axes
for ax in [ax_struct, ax_detail]:
ax.set_xticks([])
ax.set_yticks([])
ax.axis('off')
plt.tight_layout()
return fig
class PeptideStructureGenerator:
"""A class to generate 3D structures of peptides using different embedding methods"""
@staticmethod
def prepare_molecule(smiles):
"""Prepare molecule with proper hydrogen handling"""
mol = Chem.MolFromSmiles(smiles, sanitize=False)
if mol is None:
raise ValueError("Failed to create molecule from SMILES")
# Calculate valence for each atom
for atom in mol.GetAtoms():
atom.UpdatePropertyCache(strict=False)
# Sanitize with reduced requirements
Chem.SanitizeMol(mol,
sanitizeOps=Chem.SANITIZE_FINDRADICALS|
Chem.SANITIZE_KEKULIZE|
Chem.SANITIZE_SETAROMATICITY|
Chem.SANITIZE_SETCONJUGATION|
Chem.SANITIZE_SETHYBRIDIZATION|
Chem.SANITIZE_CLEANUPCHIRALITY)
mol = Chem.AddHs(mol)
return mol
@staticmethod
def get_etkdg_params(attempt=0):
"""Get ETKDG parameters with optional modifications based on attempt number"""
params = AllChem.ETKDGv3()
params.randomSeed = -1
params.maxIterations = 200
params.numThreads = 4 # Reduced for web interface
params.useBasicKnowledge = True
params.enforceChirality = True
params.useExpTorsionAnglePrefs = True
params.useSmallRingTorsions = True
params.useMacrocycleTorsions = True
params.ETversion = 2
params.pruneRmsThresh = -1
params.embedRmsThresh = 0.5
if attempt > 10:
params.bondLength = 1.5 + (attempt - 10) * 0.02
params.useExpTorsionAnglePrefs = False
return params
def generate_structure_etkdg(self, smiles, max_attempts=20):
"""Generate 3D structure using ETKDG without UFF optimization"""
success = False
mol = None
for attempt in range(max_attempts):
try:
mol = self.prepare_molecule(smiles)
params = self.get_etkdg_params(attempt)
if AllChem.EmbedMolecule(mol, params) == 0:
success = True
break
except Exception as e:
continue
if not success:
raise ValueError("Failed to generate structure with ETKDG")
return mol
def generate_structure_uff(self, smiles, max_attempts=20):
"""Generate 3D structure using ETKDG followed by UFF optimization"""
best_mol = None
lowest_energy = float('inf')
for attempt in range(max_attempts):
try:
test_mol = self.prepare_molecule(smiles)
params = self.get_etkdg_params(attempt)
if AllChem.EmbedMolecule(test_mol, params) == 0:
res = AllChem.UFFOptimizeMolecule(test_mol, maxIters=2000,
vdwThresh=10.0, confId=0,
ignoreInterfragInteractions=True)
if res == 0:
ff = AllChem.UFFGetMoleculeForceField(test_mol)
if ff:
current_energy = ff.CalcEnergy()
if current_energy < lowest_energy:
lowest_energy = current_energy
best_mol = Chem.Mol(test_mol)
except Exception:
continue
if best_mol is None:
raise ValueError("Failed to generate optimized structure")
return best_mol
@staticmethod
def mol_to_sdf_bytes(mol):
"""Convert RDKit molecule to SDF file bytes"""
# First write to StringIO in text mode
sio = StringIO()
writer = Chem.SDWriter(sio)
writer.write(mol)
writer.close()
# Convert the string to bytes
return sio.getvalue().encode('utf-8')
def process_input(smiles_input=None, file_obj=None, show_linear=False,
show_segment_details=False, generate_3d=False, use_uff=False):
"""Process input and create visualizations using PeptideAnalyzer"""
analyzer = PeptideAnalyzer()
temp_dir = tempfile.mkdtemp() if generate_3d else None
structure_files = []
# Handle direct SMILES input
if smiles_input:
smiles = smiles_input.strip()
# First check if it's a peptide using analyzer's method
if not analyzer.is_peptide(smiles):
return "Error: Input SMILES does not appear to be a peptide structure.", None, None
try:
# Create molecule
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return "Error: Invalid SMILES notation.", None, None
# Generate 3D structures if requested
if generate_3d:
generator = PeptideStructureGenerator()
try:
# Generate ETKDG structure
mol_etkdg = generator.generate_structure_etkdg(smiles)
etkdg_path = os.path.join(temp_dir, "structure_etkdg.sdf")
writer = Chem.SDWriter(etkdg_path)
writer.write(mol_etkdg)
writer.close()
structure_files.append(etkdg_path)
# Generate UFF structure if requested
if use_uff:
mol_uff = generator.generate_structure_uff(smiles)
uff_path = os.path.join(temp_dir, "structure_uff.sdf")
writer = Chem.SDWriter(uff_path)
writer.write(mol_uff)
writer.close()
structure_files.append(uff_path)
except Exception as e:
return f"Error generating 3D structures: {str(e)}", None, None, None
# Use analyzer to get sequence
segments = analyzer.split_on_bonds(smiles)
# Process segments and build sequence
sequence_parts = []
output_text = ""
# Only include segment analysis in output if requested
if show_segment_details:
output_text += "Segment Analysis:\n"
for i, segment in enumerate(segments):
output_text += f"\nSegment {i}:\n"
output_text += f"Content: {segment['content']}\n"
output_text += f"Bond before: {segment.get('bond_before', 'None')}\n"
output_text += f"Bond after: {segment.get('bond_after', 'None')}\n"
residue, mods = analyzer.identify_residue(segment)
if residue:
if mods:
sequence_parts.append(f"{residue}({','.join(mods)})")
else:
sequence_parts.append(residue)
output_text += f"Identified as: {residue}\n"
output_text += f"Modifications: {mods}\n"
else:
output_text += f"Warning: Could not identify residue in segment: {segment['content']}\n"
output_text += "\n"
else:
# Just build sequence without detailed analysis in output
for segment in segments:
residue, mods = analyzer.identify_residue(segment)
if residue:
if mods:
sequence_parts.append(f"{residue}({','.join(mods)})")
else:
sequence_parts.append(residue)
# Check if cyclic using analyzer's method
is_cyclic, peptide_cycles, aromatic_cycles = analyzer.is_cyclic(smiles)
three_letter = '-'.join(sequence_parts)
one_letter = ''.join(analyzer.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence_parts)
if is_cyclic:
three_letter = f"cyclo({three_letter})"
one_letter = f"cyclo({one_letter})"
# Create cyclic structure visualization
img_cyclic = annotate_cyclic_structure(mol, three_letter)
# Create linear representation if requested
img_linear = None
if show_linear:
fig_linear = create_enhanced_linear_viz(three_letter, smiles)
buf = BytesIO()
fig_linear.savefig(buf, format='png', bbox_inches='tight', dpi=300)
buf.seek(0)
img_linear = Image.open(buf)
plt.close(fig_linear)
# Add summary to output
summary = "Summary:\n"
summary += f"Sequence: {three_letter}\n"
summary += f"One-letter code: {one_letter}\n"
summary += f"Is Cyclic: {'Yes' if is_cyclic else 'No'}\n"
#if is_cyclic:
#summary += f"Peptide Cycles: {', '.join(peptide_cycles)}\n"
#summary += f"Aromatic Cycles: {', '.join(aromatic_cycles)}\n"
if structure_files:
summary += "\n3D Structures Generated:\n"
for filepath in structure_files:
summary += f"- {os.path.basename(filepath)}\n"
return summary + output_text, img_cyclic, img_linear, structure_files if structure_files else None
except Exception as e:
return f"Error processing SMILES: {str(e)}", None, None, None
# Handle file input
if file_obj is not None:
try:
# Handle file content
if hasattr(file_obj, 'name'):
with open(file_obj.name, 'r') as f:
content = f.read()
else:
content = file_obj.decode('utf-8') if isinstance(file_obj, bytes) else str(file_obj)
output_text = ""
for line in content.splitlines():
smiles = line.strip()
if smiles:
# Check if it's a peptide
if not analyzer.is_peptide(smiles):
output_text += f"Skipping non-peptide SMILES: {smiles}\n"
continue
# Process this SMILES
segments = analyzer.split_on_bonds(smiles)
sequence_parts = []
# Add segment details if requested
if show_segment_details:
output_text += f"\nSegment Analysis for SMILES: {smiles}\n"
for i, segment in enumerate(segments):
output_text += f"\nSegment {i}:\n"
output_text += f"Content: {segment['content']}\n"
output_text += f"Bond before: {segment.get('bond_before', 'None')}\n"
output_text += f"Bond after: {segment.get('bond_after', 'None')}\n"
residue, mods = analyzer.identify_residue(segment)
if residue:
if mods:
sequence_parts.append(f"{residue}({','.join(mods)})")
else:
sequence_parts.append(residue)
output_text += f"Identified as: {residue}\n"
output_text += f"Modifications: {mods}\n"
else:
for segment in segments:
residue, mods = analyzer.identify_residue(segment)
if residue:
if mods:
sequence_parts.append(f"{residue}({','.join(mods)})")
else:
sequence_parts.append(residue)
# Get cyclicity and create sequence
is_cyclic, peptide_cycles, aromatic_cycles = analyzer.is_cyclic(smiles)
sequence = f"cyclo({'-'.join(sequence_parts)})" if is_cyclic else '-'.join(sequence_parts)
output_text += f"\nSummary for SMILES: {smiles}\n"
output_text += f"Sequence: {sequence}\n"
output_text += f"Is Cyclic: {'Yes' if is_cyclic else 'No'}\n"
if is_cyclic:
output_text += f"Peptide Cycles: {', '.join(peptide_cycles)}\n"
#output_text += f"Aromatic Cycles: {', '.join(aromatic_cycles)}\n"
output_text += "-" * 50 + "\n"
return output_text, None, None
except Exception as e:
return f"Error processing file: {str(e)}", None, None
return "No input provided.", None, None
iface = gr.Interface(
fn=process_input,
inputs=[
gr.Textbox(
label="Enter SMILES string",
placeholder="Enter SMILES notation of peptide...",
lines=2
),
gr.File(
label="Or upload a text file with SMILES",
file_types=[".txt"]
),
gr.Checkbox(
label="Show linear representation",
value=False
),
gr.Checkbox(
label="Show segment details",
value=False
),
gr.Checkbox(
label="Generate 3D structure (sdf file format)",
value=False
),
gr.Checkbox(
label="Use UFF optimization (may take long)",
value=False
)
],
outputs=[
gr.Textbox(
label="Analysis Results",
lines=10
),
gr.Image(
label="2D Structure with Annotations",
type="pil"
),
gr.Image(
label="Linear Representation",
type="pil"
),
gr.File(
label="3D Structure Files",
file_count="multiple"
)
],
title="Peptide Structure Analyzer and Visualizer",
description="""
Analyze and visualize peptide structures from SMILES notation:
1. Validates if the input is a peptide structure
2. Determines if the peptide is cyclic
3. Parses the amino acid sequence
4. Creates 2D structure visualization with residue annotations
5. Optional linear representation
6. Optional 3D structure generation (ETKDG and UFF methods)
Input: Either enter a SMILES string directly or upload a text file containing SMILES strings
Example SMILES strings (copy and paste):
```
CC(C)C[C@@H]1NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@@H](C)N(C)C(=O)[C@H](Cc2ccccc2)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H]2CCCN2C1=O
```
```
C(C)C[C@@H]1NC(=O)[C@@H]2CCCN2C(=O)[C@@H](CC(C)C)NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@H](C)NC(=O)[C@H](Cc2ccccc2)NC1=O
```
```
CC(C)C[C@H]1C(=O)N(C)[C@@H](Cc2ccccc2)C(=O)NCC(=O)N[C@H](C(=O)N2CCCCC2)CC(=O)N(C)CC(=O)N[C@@H]([C@@H](C)O)C(=O)N(C)[C@@H](C)C(=O)N[C@@H](COC(C)(C)C)C(=O)N(C)[C@@H](Cc2ccccc2)C(=O)N1C
```
""",
flagging_mode="never"
)
# Launch the app
if __name__ == "__main__":
iface.launch(share=True) |