File size: 2,577 Bytes
71532a4
 
 
 
 
 
 
6af3fc8
 
71532a4
 
 
 
6af3fc8
71532a4
 
 
 
 
 
6af3fc8
71532a4
 
 
 
6af3fc8
71532a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37ffe44
 
 
 
71532a4
 
 
 
6af3fc8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import transformers
from transformers import AutoTokenizer, AutoModelForMaskedLM
import logging
import torch
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import gradio as gr

def get_heatmap(sequence):
  logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  print(f"Using device: {device}")

  # Load the tokenizer and model
  model_name = "ChatterjeeLab/FusOn-pLM"
  tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
  model = AutoModelForMaskedLM.from_pretrained(model_name, trust_remote_code=True)
  model.to(device)
  model.eval()

  all_logits = []
  for i in range(len(sequence)):
    # add a masked token
    masked_seq = sequence[:i] + '<mask>' + sequence[i+1:]

    # tokenize masked sequence
    inputs = tokenizer(masked_seq, return_tensors="pt", padding=True, truncation=True,max_length=2000)
    inputs = {k: v.to(device) for k, v in inputs.items()}

    # predict logits for the masked token
    with torch.no_grad():
      logits = model(**inputs).logits
    mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
    mask_token_logits = logits[0, mask_token_index, :]
    top_1_tokens = torch.topk(mask_token_logits, 1, dim=1).indices[0].item()
    logits_array = mask_token_logits.cpu().numpy()

    # filter out non-amino acid tokens
    filtered_indices = list(range(4, 23 + 1))
    filtered_logits = logits_array[:, filtered_indices]
    all_logits.append(filtered_logits)

  token_indices = torch.arange(logits.size(-1))
  tokens = [tokenizer.decode([idx]) for idx in token_indices]
  filtered_tokens = [tokens[i] for i in filtered_indices]

  all_logits_array = np.vstack(all_logits)
  normalized_logits_array = (all_logits_array - all_logits_array.min()) / (all_logits_array.max() - all_logits_array.min())
  transposed_logits_array = normalized_logits_array.T



  # Plotting the heatmap
  step = 50
  y_tick_positions = np.arange(0, len(sequence), step)
  y_tick_labels = [str(pos) for pos in y_tick_positions]

  plt.figure(figsize=(15, 8))
  sns.heatmap(transposed_logits_array, cmap='plasma', xticklabels=y_tick_labels, yticklabels=filtered_tokens)
  plt.title('Logits for masked per residue tokens')
  plt.ylabel('Token')
  plt.xlabel('Residue Index')
  plt.yticks(rotation=0)
  plt.xticks(y_tick_positions, y_tick_labels, rotation = 0)

  fig = plt.gcf()
  plt.close(fig)

  return fig



demo = gr.Interface(fn=get_heatmap, inputs="text", outputs="image")

demo.launch()