Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import logging
|
7 |
+
import numpy as np
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import seaborn as sns
|
10 |
+
from io import BytesIO
|
11 |
+
from PIL import Image
|
12 |
+
from contextlib import contextmanager
|
13 |
+
import warnings
|
14 |
+
import sys
|
15 |
+
import os
|
16 |
+
import zipfile
|
17 |
+
|
18 |
+
logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)
|
19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
print(f"Using device: {device}")
|
21 |
+
|
22 |
+
# Load the tokenizer and model
|
23 |
+
model_name = "ChatterjeeLab/FusOn-pLM"
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
25 |
+
model = AutoModelForMaskedLM.from_pretrained(model_name, trust_remote_code=True)
|
26 |
+
model.to(device)
|
27 |
+
model.eval()
|
28 |
+
|
29 |
+
@contextmanager
|
30 |
+
def suppress_output():
|
31 |
+
with open(os.devnull, 'w') as devnull:
|
32 |
+
old_stdout = sys.stdout
|
33 |
+
sys.stdout = devnull
|
34 |
+
try:
|
35 |
+
yield
|
36 |
+
finally:
|
37 |
+
sys.stdout = old_stdout
|
38 |
+
|
39 |
+
def process_sequence(sequence, domain_bounds, n):
|
40 |
+
AAs_tokens = ['L', 'A', 'G', 'V', 'S', 'E', 'R', 'T', 'I', 'D', 'P', 'K', 'Q', 'N', 'F', 'Y', 'M', 'H', 'W', 'C']
|
41 |
+
AAs_tokens_indices = {'L' : 4, 'A' : 5, 'G' : 6, 'V': 7, 'S' : 8, 'E' : 9, 'R' : 10, 'T' : 11, 'I': 12, 'D' : 13, 'P' : 14,
|
42 |
+
'K' : 15, 'Q' : 16, 'N' : 17, 'F' : 18, 'Y' : 19, 'M' : 20, 'H' : 21, 'W' : 22, 'C' : 23}
|
43 |
+
# checking sequence inputs
|
44 |
+
if not sequence.strip():
|
45 |
+
raise gr.Error("Error: The sequence input is empty. Please enter a valid protein sequence.")
|
46 |
+
return None, None, None
|
47 |
+
if any(char not in AAs_tokens for char in sequence):
|
48 |
+
raise gr.Error("Error: The sequence input contains non-amino acid characters. Please enter a valid protein sequence.")
|
49 |
+
return None, None, None
|
50 |
+
|
51 |
+
# checking domain bounds inputs
|
52 |
+
try:
|
53 |
+
start = int(domain_bounds['start'][0])
|
54 |
+
end = int(domain_bounds['end'][0])
|
55 |
+
except ValueError:
|
56 |
+
raise gr.Error("Error: Start and end indices must be integers.")
|
57 |
+
return None, None, None
|
58 |
+
if start >= end:
|
59 |
+
raise gr.Error("Start index must be smaller than end index.")
|
60 |
+
return None, None, None
|
61 |
+
if start == 0 and end != 0:
|
62 |
+
raise gr.Error("Indexing starts at 1. Please enter valid domain bounds.")
|
63 |
+
return None, None, None
|
64 |
+
if start <= 0 or end <= 0:
|
65 |
+
raise gr.Error("Domain bounds must be positive integers. Please enter valid domain bounds.")
|
66 |
+
return None, None, None
|
67 |
+
if start > len(sequence) or end > len(sequence):
|
68 |
+
raise gr.Error("Domain bounds exceed sequence length.")
|
69 |
+
return None, None, None
|
70 |
+
|
71 |
+
# checking top n tokens input
|
72 |
+
if n == None:
|
73 |
+
raise gr.Error("Choose Top N Tokens from the dropdown menu.")
|
74 |
+
return None, None, None
|
75 |
+
|
76 |
+
start_index = int(domain_bounds['start'][0]) - 1
|
77 |
+
end_index = int(domain_bounds['end'][0])
|
78 |
+
|
79 |
+
top_n_mutations = {}
|
80 |
+
all_logits = []
|
81 |
+
|
82 |
+
# these 2 lists are for the 2nd heatmap
|
83 |
+
originals_logits = []
|
84 |
+
conservation_likelihoods = {}
|
85 |
+
|
86 |
+
for i in range(len(sequence)):
|
87 |
+
# only iterate through the residues inside the domain
|
88 |
+
if start_index <= i <= (end_index - 1):
|
89 |
+
original_residue = sequence[i]
|
90 |
+
original_residue_index = AAs_tokens_indices[original_residue]
|
91 |
+
masked_seq = sequence[:i] + '<mask>' + sequence[i+1:]
|
92 |
+
inputs = tokenizer(masked_seq, return_tensors="pt", padding=True, truncation=True, max_length=2000)
|
93 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
94 |
+
with torch.no_grad():
|
95 |
+
logits = model(**inputs).logits
|
96 |
+
mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
|
97 |
+
mask_token_logits = logits[0, mask_token_index, :]
|
98 |
+
|
99 |
+
# Pick top N tokens
|
100 |
+
all_tokens_logits = mask_token_logits.squeeze(0)
|
101 |
+
top_tokens_indices = torch.argsort(all_tokens_logits, dim=0, descending=True)
|
102 |
+
top_tokens_logits = all_tokens_logits[top_tokens_indices]
|
103 |
+
mutation = []
|
104 |
+
# make sure we don't include non-AA tokens
|
105 |
+
for token_index in top_tokens_indices:
|
106 |
+
decoded_token = tokenizer.decode([token_index.item()])
|
107 |
+
# decoded all tokens, pick the top n amino acid ones
|
108 |
+
if decoded_token in AAs_tokens:
|
109 |
+
mutation.append(decoded_token)
|
110 |
+
if len(mutation) == n:
|
111 |
+
break
|
112 |
+
top_n_mutations[(sequence[i], i)] = mutation
|
113 |
+
|
114 |
+
# collecting logits for the heatmap
|
115 |
+
logits_array = mask_token_logits.cpu().numpy()
|
116 |
+
# filter out non-amino acid tokens
|
117 |
+
filtered_indices = list(range(4, 23 + 1))
|
118 |
+
filtered_logits = logits_array[:, filtered_indices]
|
119 |
+
all_logits.append(filtered_logits)
|
120 |
+
|
121 |
+
# code for the second heatmap
|
122 |
+
normalized_mask_token_logits = F.softmax(torch.tensor(mask_token_logits).cpu(), dim=-1).numpy()
|
123 |
+
normalized_mask_token_logits = np.squeeze(normalized_mask_token_logits)
|
124 |
+
originals_logit = normalized_mask_token_logits[original_residue_index]
|
125 |
+
originals_logits.append(originals_logit)
|
126 |
+
|
127 |
+
if originals_logit > 0.7:
|
128 |
+
conservation_likelihoods[(original_residue, i)] = 1
|
129 |
+
else:
|
130 |
+
conservation_likelihoods[(original_residue, i)] = 0
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
# Plotting heatmap 2
|
135 |
+
domain_len = end - start
|
136 |
+
if 500 > domain_len > 100:
|
137 |
+
step_size = 49
|
138 |
+
elif 500 <= domain_len:
|
139 |
+
step_size = 99
|
140 |
+
elif domain_len < 10:
|
141 |
+
step_size = 1
|
142 |
+
else:
|
143 |
+
step_size = 9
|
144 |
+
x_tick_positions = np.arange(start_index, end_index, step_size)
|
145 |
+
x_tick_labels = [str(pos + 1) for pos in x_tick_positions]
|
146 |
+
|
147 |
+
all_logits_array = np.vstack(originals_logits)
|
148 |
+
transposed_logits_array = all_logits_array.T
|
149 |
+
conservation_likelihoods_array = np.array(list(conservation_likelihoods.values())).reshape(1, -1)
|
150 |
+
# combine to make a 2D heatmap
|
151 |
+
combined_array = np.vstack((transposed_logits_array, conservation_likelihoods_array))
|
152 |
+
|
153 |
+
plt.figure(figsize=(15, 5))
|
154 |
+
plt.rcParams.update({'font.size': 16.5})
|
155 |
+
sns.heatmap(combined_array, cmap='viridis', xticklabels=x_tick_labels, yticklabels=['Residue \nLogits', 'Residue \nConservation'], cbar=True)
|
156 |
+
plt.title('Original Residue Probability and Conservation')
|
157 |
+
plt.xlabel('Residue Index')
|
158 |
+
plt.show()
|
159 |
+
buf = BytesIO()
|
160 |
+
plt.savefig(buf, format='png', dpi=300)
|
161 |
+
buf.seek(0)
|
162 |
+
plt.close()
|
163 |
+
img_2 = Image.open(buf)
|
164 |
+
|
165 |
+
|
166 |
+
# plotting heatmap 1
|
167 |
+
token_indices = torch.arange(logits.size(-1))
|
168 |
+
tokens = [tokenizer.decode([idx]) for idx in token_indices]
|
169 |
+
filtered_tokens = [tokens[i] for i in filtered_indices]
|
170 |
+
all_logits_array = np.vstack(all_logits)
|
171 |
+
normalized_logits_array = F.softmax(torch.tensor(all_logits_array), dim=-1).numpy()
|
172 |
+
transposed_logits_array = normalized_logits_array.T
|
173 |
+
|
174 |
+
|
175 |
+
plt.figure(figsize=(15, 8))
|
176 |
+
plt.rcParams.update({'font.size': 16.5})
|
177 |
+
sns.heatmap(transposed_logits_array, cmap='plasma', xticklabels=x_tick_labels, yticklabels=filtered_tokens)
|
178 |
+
plt.title('Token Probability')
|
179 |
+
plt.ylabel('Amino Acid')
|
180 |
+
plt.xlabel('Residue Index')
|
181 |
+
plt.yticks(rotation=0)
|
182 |
+
plt.xticks(x_tick_positions - start_index + 0.5, x_tick_labels, rotation=0)
|
183 |
+
|
184 |
+
buf = BytesIO()
|
185 |
+
plt.savefig(buf, format='png', dpi = 300)
|
186 |
+
buf.seek(0)
|
187 |
+
plt.close()
|
188 |
+
|
189 |
+
img_1 = Image.open(buf)
|
190 |
+
|
191 |
+
# store the predicted mutations in a dataframe
|
192 |
+
original_residues = []
|
193 |
+
mutations = []
|
194 |
+
positions = []
|
195 |
+
|
196 |
+
for key, value in top_n_mutations.items():
|
197 |
+
original_residue, position = key
|
198 |
+
original_residues.append(original_residue)
|
199 |
+
mutations.append(value)
|
200 |
+
positions.append(position + 1)
|
201 |
+
|
202 |
+
df = pd.DataFrame({
|
203 |
+
'Original Residue': original_residues,
|
204 |
+
'Predicted Residues': mutations,
|
205 |
+
'Position': positions
|
206 |
+
})
|
207 |
+
df.to_csv("predicted_tokens.csv", index=False)
|
208 |
+
img_1.save("heatmap.png", dpi=(300, 300))
|
209 |
+
img_2.save("heatmap_2.png", dpi=(300, 300))
|
210 |
+
zip_path = "outputs.zip"
|
211 |
+
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
212 |
+
zipf.write("predicted_tokens.csv")
|
213 |
+
zipf.write("heatmap.png")
|
214 |
+
zipf.write("heatmap_2.png")
|
215 |
+
|
216 |
+
return df, img_1, img_2, zip_path
|
217 |
+
|
218 |
+
# launch the demo
|
219 |
+
demo = gr.Interface(
|
220 |
+
fn=process_sequence,
|
221 |
+
inputs=[
|
222 |
+
gr.Textbox(label="Sequence", placeholder="Enter the protein sequence here"),
|
223 |
+
gr.Dataframe(
|
224 |
+
value = [[1, 1]],
|
225 |
+
headers=["start", "end"],
|
226 |
+
datatype=["number", "number"],
|
227 |
+
row_count=(1, "fixed"),
|
228 |
+
col_count=(2, "fixed"),
|
229 |
+
label="Domain Bounds"
|
230 |
+
),
|
231 |
+
gr.Dropdown([i for i in range(1, 21)], label="Top N Tokens"),
|
232 |
+
],
|
233 |
+
outputs=[
|
234 |
+
gr.Dataframe(label="Predicted Tokens (in order of decreasing likelihood)"),
|
235 |
+
gr.Image(type="pil", label="Probability Distribution for All Tokens"),
|
236 |
+
gr.Image(type="pil", label="Residue Conservation"),
|
237 |
+
gr.File(label="Download Outputs"),
|
238 |
+
],
|
239 |
+
)
|
240 |
+
if __name__ == "__main__":
|
241 |
+
with suppress_output():
|
242 |
+
demo.launch()
|