Kseniia-Kholina commited on
Commit
26ac9e7
·
verified ·
1 Parent(s): b73ddaf

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +126 -0
app.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #@title Lauch the Interface
2
+ #@markdown Run to launch the interface.
3
+ #@markdown 1. Enter the protein sequence.
4
+ #@markdown 2. Specify the start and end index (inclusive) of the domain for which you would like to predict mutations (note that indexing starts at 1).
5
+ #@markdown 3. Select the number of tokens you would like the model to predict for each position.
6
+ #@markdown 4. Click 'Submit'.
7
+ #@markdown 5. Click 'Download Outputs' to download the zip file.
8
+
9
+ def process_sequence(sequence, domain_bounds, n):
10
+ start_index = int(domain_bounds['start'][0]) - 1
11
+ end_index = int(domain_bounds['end'][0])
12
+
13
+ top_n_mutations = {}
14
+ all_logits = []
15
+
16
+ for i in range(len(sequence)):
17
+ if start_index <= i <= (end_index - 1):
18
+ masked_seq = sequence[:i] + '<mask>' + sequence[i+1:]
19
+ inputs = tokenizer(masked_seq, return_tensors="pt", padding=True, truncation=True, max_length=2000)
20
+ inputs = {k: v.to(device) for k, v in inputs.items()}
21
+ with torch.no_grad():
22
+ logits = model(**inputs).logits
23
+ mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
24
+ mask_token_logits = logits[0, mask_token_index, :]
25
+
26
+ # Define amino acid tokens
27
+ AAs_tokens = ['L', 'A', 'G', 'V', 'S', 'E', 'R', 'T', 'I', 'D', 'P', 'K', 'Q', 'N', 'F', 'Y', 'M', 'H', 'W', 'C']
28
+ all_tokens_logits = mask_token_logits.squeeze(0)
29
+ top_tokens_indices = torch.argsort(all_tokens_logits, dim=0, descending=True)
30
+ top_tokens_logits = all_tokens_logits[top_tokens_indices]
31
+ mutation = []
32
+ # make sure we don't include non-AA tokens
33
+ for token_index in top_tokens_indices:
34
+ decoded_token = tokenizer.decode([token_index.item()])
35
+ if decoded_token in AAs_tokens:
36
+ mutation.append(decoded_token)
37
+ if len(mutation) == n:
38
+ break
39
+ top_n_mutations[(sequence[i], i)] = mutation
40
+
41
+ # collecting logits for the heatmap
42
+ logits_array = mask_token_logits.cpu().numpy()
43
+ # filter out non-amino acid tokens
44
+ filtered_indices = list(range(4, 23 + 1))
45
+ filtered_logits = logits_array[:, filtered_indices]
46
+ all_logits.append(filtered_logits)
47
+
48
+
49
+ token_indices = torch.arange(logits.size(-1))
50
+ tokens = [tokenizer.decode([idx]) for idx in token_indices]
51
+ filtered_tokens = [tokens[i] for i in filtered_indices]
52
+
53
+ all_logits_array = np.vstack(all_logits)
54
+ normalized_logits_array = F.softmax(torch.tensor(all_logits_array), dim=-1).numpy()
55
+ transposed_logits_array = normalized_logits_array.T
56
+
57
+ # Plotting the heatmap
58
+ x_tick_positions = np.arange(start_index, end_index, 10)
59
+ x_tick_labels = [str(pos + 1) for pos in x_tick_positions]
60
+
61
+ plt.figure(figsize=(15, 8))
62
+ plt.rcParams.update({'font.size': 18})
63
+
64
+ sns.heatmap(transposed_logits_array, cmap='plasma', xticklabels=x_tick_labels, yticklabels=filtered_tokens)
65
+ plt.title('Token Probability Heatmap')
66
+ plt.ylabel('Token')
67
+ plt.xlabel('Residue Index')
68
+ plt.yticks(rotation=0)
69
+ plt.xticks(x_tick_positions - start_index + 0.5, x_tick_labels, rotation=0)
70
+
71
+ # Save the figure to a BytesIO object
72
+ buf = BytesIO()
73
+ plt.savefig(buf, format='png', dpi = 300)
74
+ buf.seek(0)
75
+ plt.close()
76
+
77
+ # Convert BytesIO object to an image
78
+ img = Image.open(buf)
79
+
80
+ original_residues = []
81
+ mutations = []
82
+ positions = []
83
+
84
+ for key, value in top_n_mutations.items():
85
+ original_residue, position = key
86
+ original_residues.append(original_residue)
87
+ mutations.append(value)
88
+ positions.append(position + 1)
89
+
90
+ df = pd.DataFrame({
91
+ 'Original Residue': original_residues,
92
+ 'Predicted Residues': mutations,
93
+ 'Position': positions
94
+ })
95
+ df.to_csv("predicted_tokens.csv", index=False)
96
+ img.save("heatmap.png", dpi = 300)
97
+ zip_path = "outputs.zip"
98
+ with zipfile.ZipFile(zip_path, 'w') as zipf:
99
+ zipf.write("predicted_tokens.csv")
100
+ zipf.write("heatmap.png")
101
+
102
+
103
+ return df, img, zip_path
104
+
105
+ demo = gr.Interface(
106
+ fn=process_sequence,
107
+ inputs=[
108
+ gr.Textbox(label="Sequence", placeholder="Enter the protein sequence here"),
109
+ gr.Dataframe(
110
+ headers=["start", "end"],
111
+ datatype=["number", "number"],
112
+ row_count=(1, "fixed"),
113
+ col_count=(2, "fixed"),
114
+ label="Domain Bounds"
115
+ ),
116
+ gr.Dropdown([i for i in range(1, 21)], label="Top N Tokens"),
117
+ ],
118
+ outputs=[
119
+ gr.Dataframe(label="Predicted Tokens (in order of decreasing likelihood)"),
120
+ gr.Image(type="pil", label="Heatmap"),
121
+ gr.File(label="Download Outputs"),
122
+ ],
123
+ )
124
+ if __name__ == "__main__":
125
+ with suppress_output():
126
+ demo.launch(show_error=False, debug=False)