Delete app_all_seq.py
Browse files- app_all_seq.py +0 -116
app_all_seq.py
DELETED
@@ -1,116 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import pandas as pd
|
3 |
-
import torch
|
4 |
-
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
5 |
-
import logging
|
6 |
-
import numpy as np
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
-
import seaborn as sns
|
9 |
-
from io import BytesIO
|
10 |
-
from PIL import Image
|
11 |
-
|
12 |
-
logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)
|
13 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
-
print(f"Using device: {device}")
|
15 |
-
|
16 |
-
# Load the tokenizer and model
|
17 |
-
model_name = "ChatterjeeLab/FusOn-pLM"
|
18 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
19 |
-
model = AutoModelForMaskedLM.from_pretrained(model_name, trust_remote_code=True)
|
20 |
-
model.to(device)
|
21 |
-
model.eval()
|
22 |
-
|
23 |
-
def process_sequence(sequence, domain_bounds, n):
|
24 |
-
start_index = int(domain_bounds['start'][0]) - 1
|
25 |
-
end_index = int(domain_bounds['end'][0])
|
26 |
-
|
27 |
-
top_n_mutations = {}
|
28 |
-
all_logits = []
|
29 |
-
|
30 |
-
for i in range(len(sequence)):
|
31 |
-
masked_seq = sequence[:i] + '<mask>' + sequence[i+1:]
|
32 |
-
inputs = tokenizer(masked_seq, return_tensors="pt", padding=True, truncation=True, max_length=2000)
|
33 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
34 |
-
with torch.no_grad():
|
35 |
-
logits = model(**inputs).logits
|
36 |
-
mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
|
37 |
-
mask_token_logits = logits[0, mask_token_index, :]
|
38 |
-
# Decode top n tokens
|
39 |
-
top_n_tokens = torch.topk(mask_token_logits, n, dim=1).indices[0].tolist()
|
40 |
-
mutation = [tokenizer.decode([token]) for token in top_n_tokens]
|
41 |
-
top_n_mutations[(sequence[i], i)] = mutation
|
42 |
-
|
43 |
-
logits_array = mask_token_logits.cpu().numpy()
|
44 |
-
# filter out non-amino acid tokens
|
45 |
-
filtered_indices = list(range(4, 23 + 1))
|
46 |
-
filtered_logits = logits_array[:, filtered_indices]
|
47 |
-
all_logits.append(filtered_logits)
|
48 |
-
|
49 |
-
token_indices = torch.arange(logits.size(-1))
|
50 |
-
tokens = [tokenizer.decode([idx]) for idx in token_indices]
|
51 |
-
filtered_tokens = [tokens[i] for i in filtered_indices]
|
52 |
-
|
53 |
-
all_logits_array = np.vstack(all_logits)
|
54 |
-
normalized_logits_array = (all_logits_array - all_logits_array.min()) / (all_logits_array.max() - all_logits_array.min())
|
55 |
-
transposed_logits_array = normalized_logits_array.T
|
56 |
-
|
57 |
-
# Plotting the heatmap
|
58 |
-
step = 50
|
59 |
-
y_tick_positions = np.arange(0, len(sequence), step)
|
60 |
-
y_tick_labels = [str(pos) for pos in y_tick_positions]
|
61 |
-
|
62 |
-
plt.figure(figsize=(15, 8))
|
63 |
-
sns.heatmap(transposed_logits_array, cmap='plasma', xticklabels=y_tick_labels, yticklabels=filtered_tokens)
|
64 |
-
plt.title('Logits for masked per residue tokens')
|
65 |
-
plt.ylabel('Token')
|
66 |
-
plt.xlabel('Residue Index')
|
67 |
-
plt.yticks(rotation=0)
|
68 |
-
plt.xticks(y_tick_positions, y_tick_labels, rotation = 0)
|
69 |
-
|
70 |
-
# Save the figure to a BytesIO object
|
71 |
-
buf = BytesIO()
|
72 |
-
plt.savefig(buf, format='png')
|
73 |
-
buf.seek(0)
|
74 |
-
plt.close()
|
75 |
-
|
76 |
-
# Convert BytesIO object to an image
|
77 |
-
img = Image.open(buf)
|
78 |
-
|
79 |
-
original_residues = []
|
80 |
-
mutations = []
|
81 |
-
positions = []
|
82 |
-
|
83 |
-
for key, value in top_n_mutations.items():
|
84 |
-
original_residue, position = key
|
85 |
-
original_residues.append(original_residue)
|
86 |
-
mutations.append(value)
|
87 |
-
positions.append(position + 1)
|
88 |
-
|
89 |
-
df = pd.DataFrame({
|
90 |
-
'Original Residue': original_residues,
|
91 |
-
'Predicted Residues (in order of decreasing likelihood)': mutations,
|
92 |
-
'Position': positions
|
93 |
-
})
|
94 |
-
|
95 |
-
df = df[start_index:end_index]
|
96 |
-
|
97 |
-
return df, img
|
98 |
-
|
99 |
-
demo = gr.Interface(
|
100 |
-
fn=process_sequence,
|
101 |
-
inputs=[
|
102 |
-
"text",
|
103 |
-
gr.Dataframe(
|
104 |
-
headers=["start", "end"],
|
105 |
-
datatype=["number", "number"],
|
106 |
-
row_count=(1, "fixed"),
|
107 |
-
col_count=(2, "fixed"),
|
108 |
-
),
|
109 |
-
gr.Dropdown([i for i in range(1, 21)]), # Dropdown with numbers from 1 to 20 as integers
|
110 |
-
],
|
111 |
-
outputs=["dataframe", "image"],
|
112 |
-
description="Choose a number between 1-20 to predict n tokens for each position. Choose the start and end index of the domain of interest (indexing starts at 1).",
|
113 |
-
)
|
114 |
-
|
115 |
-
if __name__ == "__main__":
|
116 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|