Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
| 5 |
+
import logging
|
| 6 |
+
|
| 7 |
+
logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)
|
| 8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 9 |
+
print(f"Using device: {device}")
|
| 10 |
+
|
| 11 |
+
# Load the tokenizer and model
|
| 12 |
+
model_name = "ChatterjeeLab/FusOn-pLM"
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 14 |
+
model = AutoModelForMaskedLM.from_pretrained(model_name, trust_remote_code=True)
|
| 15 |
+
model.to(device)
|
| 16 |
+
model.eval()
|
| 17 |
+
|
| 18 |
+
def process_sequence(sequence, domain_bounds, n):
|
| 19 |
+
start_index = int(domain_bounds['start'][0]) - 1
|
| 20 |
+
end_index = int(domain_bounds['end'][0])
|
| 21 |
+
|
| 22 |
+
top_n_mutations = {}
|
| 23 |
+
all_logits = []
|
| 24 |
+
|
| 25 |
+
for i in range(len(sequence)):
|
| 26 |
+
masked_seq = sequence[:i] + '<mask>' + sequence[i+1:]
|
| 27 |
+
inputs = tokenizer(masked_seq, return_tensors="pt", padding=True, truncation=True, max_length=2000)
|
| 28 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 29 |
+
with torch.no_grad():
|
| 30 |
+
logits = model(**inputs).logits
|
| 31 |
+
mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
|
| 32 |
+
mask_token_logits = logits[0, mask_token_index, :]
|
| 33 |
+
# Decode top n tokens
|
| 34 |
+
top_n_tokens = torch.topk(mask_token_logits, n, dim=1).indices[0].tolist()
|
| 35 |
+
mutation = [tokenizer.decode([token]) for token in top_n_tokens]
|
| 36 |
+
top_n_mutations[(sequence[i], i)] = mutation
|
| 37 |
+
|
| 38 |
+
logits_array = mask_token_logits.cpu().numpy()
|
| 39 |
+
# filter out non-amino acid tokens
|
| 40 |
+
filtered_indices = list(range(4, 23 + 1))
|
| 41 |
+
filtered_logits = logits_array[:, filtered_indices]
|
| 42 |
+
all_logits.append(filtered_logits)
|
| 43 |
+
|
| 44 |
+
token_indices = torch.arange(logits.size(-1))
|
| 45 |
+
tokens = [tokenizer.decode([idx]) for idx in token_indices]
|
| 46 |
+
filtered_tokens = [tokens[i] for i in filtered_indices]
|
| 47 |
+
|
| 48 |
+
all_logits_array = np.vstack(all_logits)
|
| 49 |
+
normalized_logits_array = (all_logits_array - all_logits_array.min()) / (all_logits_array.max() - all_logits_array.min())
|
| 50 |
+
transposed_logits_array = normalized_logits_array.T
|
| 51 |
+
|
| 52 |
+
# Plotting the heatmap
|
| 53 |
+
step = 50
|
| 54 |
+
y_tick_positions = np.arange(0, len(sequence), step)
|
| 55 |
+
y_tick_labels = [str(pos) for pos in y_tick_positions]
|
| 56 |
+
|
| 57 |
+
plt.figure(figsize=(15, 8))
|
| 58 |
+
sns.heatmap(transposed_logits_array, cmap='plasma', xticklabels=y_tick_labels, yticklabels=filtered_tokens)
|
| 59 |
+
plt.title('Logits for masked per residue tokens')
|
| 60 |
+
plt.ylabel('Token')
|
| 61 |
+
plt.xlabel('Residue Index')
|
| 62 |
+
plt.yticks(rotation=0)
|
| 63 |
+
plt.xticks(y_tick_positions, y_tick_labels, rotation = 0)
|
| 64 |
+
|
| 65 |
+
# Save the figure to a BytesIO object
|
| 66 |
+
buf = BytesIO()
|
| 67 |
+
plt.savefig(buf, format='png')
|
| 68 |
+
buf.seek(0)
|
| 69 |
+
plt.close()
|
| 70 |
+
|
| 71 |
+
# Convert BytesIO object to an image
|
| 72 |
+
img = Image.open(buf)
|
| 73 |
+
|
| 74 |
+
original_residues = []
|
| 75 |
+
mutations = []
|
| 76 |
+
positions = []
|
| 77 |
+
|
| 78 |
+
for key, value in top_n_mutations.items():
|
| 79 |
+
original_residue, position = key
|
| 80 |
+
original_residues.append(original_residue)
|
| 81 |
+
mutations.append(value)
|
| 82 |
+
positions.append(position + 1)
|
| 83 |
+
|
| 84 |
+
df = pd.DataFrame({
|
| 85 |
+
'Original Residue': original_residues,
|
| 86 |
+
'Predicted Residues (in order of decreasing likelihood)': mutations,
|
| 87 |
+
'Position': positions
|
| 88 |
+
})
|
| 89 |
+
|
| 90 |
+
df = df[start_index:end_index]
|
| 91 |
+
|
| 92 |
+
return df, img
|
| 93 |
+
|
| 94 |
+
demo = gr.Interface(
|
| 95 |
+
fn=process_sequence,
|
| 96 |
+
inputs=[
|
| 97 |
+
"text",
|
| 98 |
+
gr.Dataframe(
|
| 99 |
+
headers=["start", "end"],
|
| 100 |
+
datatype=["number", "number"],
|
| 101 |
+
row_count=(1, "fixed"),
|
| 102 |
+
col_count=(2, "fixed"),
|
| 103 |
+
),
|
| 104 |
+
gr.Dropdown([i for i in range(1, 21)]), # Dropdown with numbers from 1 to 20 as integers
|
| 105 |
+
],
|
| 106 |
+
outputs=["dataframe", "image"],
|
| 107 |
+
description="Choose a number between 1-20 to predict n tokens for each position. Choose the start and end index of the domain of interest (indexing starts at 1).",
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
if __name__ == "__main__":
|
| 111 |
+
demo.launch()
|