import gradio as gr import pandas as pd import torch from transformers import AutoTokenizer, AutoModelForMaskedLM import torch.nn.functional as F import logging import numpy as np import matplotlib.pyplot as plt import seaborn as sns from io import BytesIO from PIL import Image from contextlib import contextmanager import warnings import sys import os import zipfile logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") # Load the tokenizer and model model_name = "ChatterjeeLab/FusOn-pLM" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForMaskedLM.from_pretrained(model_name, trust_remote_code=True) model.to(device) model.eval() @contextmanager def suppress_output(): with open(os.devnull, 'w') as devnull: old_stdout = sys.stdout sys.stdout = devnull try: yield finally: sys.stdout = old_stdout def process_sequence(sequence, domain_bounds, n): AAs_tokens = ['L', 'A', 'G', 'V', 'S', 'E', 'R', 'T', 'I', 'D', 'P', 'K', 'Q', 'N', 'F', 'Y', 'M', 'H', 'W', 'C'] # checking sequence inputs if not sequence.strip(): raise gr.Error("Error: The sequence input is empty. Please enter a valid protein sequence.") return None, None, None if any(char not in AAs_tokens for char in sequence): raise gr.Error("Error: The sequence input contains non-amino acid characters. Please enter a valid protein sequence.") return None, None, None # checking domain bounds inputs try: start = int(domain_bounds['start'][0]) end = int(domain_bounds['end'][0]) except ValueError: raise gr.Error("Error: Start and end indices must be integers.") return None, None, None if start >= end: raise gr.Error("Start index must be smaller than end index.") return None, None, None if start == 0 and end != 0: raise gr.Error("Indexing starts at 1. Please enter valid domain bounds.") return None, None, None if start <= 0 or end <= 0: raise gr.Error("Domain bounds must be positive integers. Please enter valid domain bounds.") return None, None, None if start > len(sequence) or end > len(sequence): raise gr.Error("Domain bounds exceed sequence length.") return None, None, None # checking n inputs if n == None: raise gr.Error("Choose Top N Tokens from the dropdown menu.") return None, None, None start_index = int(domain_bounds['start'][0]) - 1 end_index = int(domain_bounds['end'][0]) top_n_mutations = {} all_logits = [] for i in range(len(sequence)): if start_index <= i <= (end_index - 1): masked_seq = sequence[:i] + '' + sequence[i+1:] inputs = tokenizer(masked_seq, return_tensors="pt", padding=True, truncation=True, max_length=2000) inputs = {k: v.to(device) for k, v in inputs.items()} with torch.no_grad(): logits = model(**inputs).logits mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1] mask_token_logits = logits[0, mask_token_index, :] # Define amino acid tokens all_tokens_logits = mask_token_logits.squeeze(0) top_tokens_indices = torch.argsort(all_tokens_logits, dim=0, descending=True) top_tokens_logits = all_tokens_logits[top_tokens_indices] mutation = [] # make sure we don't include non-AA tokens for token_index in top_tokens_indices: decoded_token = tokenizer.decode([token_index.item()]) if decoded_token in AAs_tokens: mutation.append(decoded_token) if len(mutation) == n: break top_n_mutations[(sequence[i], i)] = mutation # collecting logits for the heatmap logits_array = mask_token_logits.cpu().numpy() # filter out non-amino acid tokens filtered_indices = list(range(4, 23 + 1)) filtered_logits = logits_array[:, filtered_indices] all_logits.append(filtered_logits) token_indices = torch.arange(logits.size(-1)) tokens = [tokenizer.decode([idx]) for idx in token_indices] filtered_tokens = [tokens[i] for i in filtered_indices] all_logits_array = np.vstack(all_logits) normalized_logits_array = F.softmax(torch.tensor(all_logits_array), dim=-1).numpy() transposed_logits_array = normalized_logits_array.T # Plotting the heatmap domain_len = end - start if 500 > domain_len > 100: step_size = 49 elif 500 <= domain_len: step_size = 99 elif domain_len < 10: step_size = 1 else: step_size = 9 x_tick_positions = np.arange(start_index, end_index, step_size) x_tick_labels = [str(pos + 1) for pos in x_tick_positions] plt.figure(figsize=(15, 8)) plt.rcParams.update({'font.size': 18}) sns.heatmap(transposed_logits_array, cmap='plasma', xticklabels=x_tick_labels, yticklabels=filtered_tokens) plt.title('Token Probability Heatmap') plt.ylabel('Token') plt.xlabel('Residue Index') plt.yticks(rotation=0) plt.xticks(x_tick_positions - start_index + 0.5, x_tick_labels, rotation=0) # Save the figure to a BytesIO object buf = BytesIO() plt.savefig(buf, format='png', dpi = 300) buf.seek(0) plt.close() # Convert BytesIO object to an image img = Image.open(buf) original_residues = [] mutations = [] positions = [] for key, value in top_n_mutations.items(): original_residue, position = key original_residues.append(original_residue) mutations.append(value) positions.append(position + 1) df = pd.DataFrame({ 'Original Residue': original_residues, 'Predicted Residues': mutations, 'Position': positions }) df.to_csv("predicted_tokens.csv", index=False) img.save("heatmap.png", dpi=(300, 300)) zip_path = "outputs.zip" with zipfile.ZipFile(zip_path, 'w') as zipf: zipf.write("predicted_tokens.csv") zipf.write("heatmap.png") return df, img, zip_path demo = gr.Interface( fn=process_sequence, inputs=[ gr.Textbox(label="Sequence", placeholder="Enter the protein sequence here"), gr.Dataframe( headers=["start", "end"], datatype=["number", "number"], row_count=(1, "fixed"), col_count=(2, "fixed"), label="Domain Bounds" ), gr.Dropdown([i for i in range(1, 21)], label="Top N Tokens"), ], outputs=[ gr.Dataframe(label="Predicted Tokens (in order of decreasing likelihood)"), gr.Image(type="pil", label="Heatmap"), gr.File(label="Download Outputs"), ], ) if __name__ == "__main__": with suppress_output(): demo.launch()