Upload 82 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +4 -0
- AURA-CXR-Logo.png +0 -0
- CAM-Result/gradcam_result.png +3 -0
- Chest_Xray_Report_Generator-Web-V2.py +537 -0
- Feedback/feedback.txt +0 -0
- Model/config.json +0 -0
- Model/generation_config.json +6 -0
- Model/model.safetensors +3 -0
- Model/preprocessor_config.json +22 -0
- Model/rng_state.pth +3 -0
- Model/scheduler.pt +3 -0
- Model/special_tokens_map.json +6 -0
- Model/tokenizer.json +0 -0
- Model/tokenizer_config.json +20 -0
- Model/trainer_state.json +536 -0
- Model/training_args.bin +3 -0
- Model/vocab.json +0 -0
- Test-Images/0d930f0a-46f813a9-db3b137b-05142eef-eca3c5a7.jpg +3 -0
- Test-Images/6ff741e9-6ea01eef-1bf10153-d1b6beba-590b6620.jpg +3 -0
- Test-Images/93681764-ec39480e-0518b12c-199850c2-f15118ab.jpg +3 -0
- pytorch_grad_cam/Readme.md +29 -0
- pytorch_grad_cam/__init__.py +20 -0
- pytorch_grad_cam/__pycache__/__init__.cpython-39.pyc +0 -0
- pytorch_grad_cam/__pycache__/ablation_cam.cpython-39.pyc +0 -0
- pytorch_grad_cam/__pycache__/ablation_layer.cpython-39.pyc +0 -0
- pytorch_grad_cam/__pycache__/activations_and_gradients.cpython-39.pyc +0 -0
- pytorch_grad_cam/__pycache__/base_cam.cpython-39.pyc +0 -0
- pytorch_grad_cam/__pycache__/eigen_cam.cpython-39.pyc +0 -0
- pytorch_grad_cam/__pycache__/eigen_grad_cam.cpython-39.pyc +0 -0
- pytorch_grad_cam/__pycache__/fullgrad_cam.cpython-39.pyc +0 -0
- pytorch_grad_cam/__pycache__/grad_cam.cpython-39.pyc +0 -0
- pytorch_grad_cam/__pycache__/grad_cam_elementwise.cpython-39.pyc +0 -0
- pytorch_grad_cam/__pycache__/grad_cam_plusplus.cpython-39.pyc +0 -0
- pytorch_grad_cam/__pycache__/guided_backprop.cpython-39.pyc +0 -0
- pytorch_grad_cam/__pycache__/hirescam.cpython-39.pyc +0 -0
- pytorch_grad_cam/__pycache__/layer_cam.cpython-39.pyc +0 -0
- pytorch_grad_cam/__pycache__/random_cam.cpython-39.pyc +0 -0
- pytorch_grad_cam/__pycache__/score_cam.cpython-39.pyc +0 -0
- pytorch_grad_cam/__pycache__/xgrad_cam.cpython-39.pyc +0 -0
- pytorch_grad_cam/ablation_cam.py +148 -0
- pytorch_grad_cam/ablation_cam_multilayer.py +136 -0
- pytorch_grad_cam/ablation_layer.py +155 -0
- pytorch_grad_cam/activations_and_gradients.py +46 -0
- pytorch_grad_cam/base_cam.py +205 -0
- pytorch_grad_cam/cam_mult_image.py +37 -0
- pytorch_grad_cam/eigen_cam.py +23 -0
- pytorch_grad_cam/eigen_grad_cam.py +21 -0
- pytorch_grad_cam/feature_factorization/__init__.py +0 -0
- pytorch_grad_cam/feature_factorization/__pycache__/__init__.cpython-39.pyc +0 -0
- pytorch_grad_cam/feature_factorization/__pycache__/deep_feature_factorization.cpython-39.pyc +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
CAM-Result/gradcam_result.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
Test-Images/0d930f0a-46f813a9-db3b137b-05142eef-eca3c5a7.jpg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
Test-Images/6ff741e9-6ea01eef-1bf10153-d1b6beba-590b6620.jpg filter=lfs diff=lfs merge=lfs -text
|
39 |
+
Test-Images/93681764-ec39480e-0518b12c-199850c2-f15118ab.jpg filter=lfs diff=lfs merge=lfs -text
|
AURA-CXR-Logo.png
ADDED
![]() |
CAM-Result/gradcam_result.png
ADDED
![]() |
Git LFS Details
|
Chest_Xray_Report_Generator-Web-V2.py
ADDED
@@ -0,0 +1,537 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import transformers
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
### Gradio
|
6 |
+
import gradio as gr
|
7 |
+
from gradio.themes.base import Base
|
8 |
+
from gradio.themes.utils import colors, fonts, sizes
|
9 |
+
from typing import Union, Iterable
|
10 |
+
import time
|
11 |
+
#####
|
12 |
+
|
13 |
+
|
14 |
+
import cv2
|
15 |
+
import numpy as np
|
16 |
+
import pydicom
|
17 |
+
import re
|
18 |
+
|
19 |
+
##### Libraries For Grad-Cam-View
|
20 |
+
import os
|
21 |
+
import cv2
|
22 |
+
import numpy as np
|
23 |
+
import torch
|
24 |
+
from functools import partial
|
25 |
+
from torchvision import transforms
|
26 |
+
from pytorch_grad_cam import GradCAM, ScoreCAM, GradCAMPlusPlus, AblationCAM, XGradCAM, EigenCAM, EigenGradCAM, LayerCAM, FullGrad
|
27 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image
|
28 |
+
from pytorch_grad_cam.ablation_layer import AblationLayerVit
|
29 |
+
from transformers import VisionEncoderDecoderModel
|
30 |
+
|
31 |
+
|
32 |
+
from transformers import AutoTokenizer
|
33 |
+
import transformers
|
34 |
+
import torch
|
35 |
+
|
36 |
+
from openai import OpenAI
|
37 |
+
client = OpenAI()
|
38 |
+
|
39 |
+
import spaces # Import the spaces module for ZeroGPU
|
40 |
+
|
41 |
+
|
42 |
+
@spaces.GPU
|
43 |
+
def generate_gradcam(image_path, model_path, output_path, method='gradcam', use_cuda=True, aug_smooth=False, eigen_smooth=False):
|
44 |
+
methods = {
|
45 |
+
"gradcam": GradCAM,
|
46 |
+
"scorecam": ScoreCAM,
|
47 |
+
"gradcam++": GradCAMPlusPlus,
|
48 |
+
"ablationcam": AblationCAM,
|
49 |
+
"xgradcam": XGradCAM,
|
50 |
+
"eigencam": EigenCAM,
|
51 |
+
"eigengradcam": EigenGradCAM,
|
52 |
+
"layercam": LayerCAM,
|
53 |
+
"fullgrad": FullGrad
|
54 |
+
}
|
55 |
+
|
56 |
+
if method not in methods:
|
57 |
+
raise ValueError(f"Method should be one of {list(methods.keys())}")
|
58 |
+
|
59 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_path)
|
60 |
+
model.encoder.eval()
|
61 |
+
|
62 |
+
if use_cuda and torch.cuda.is_available():
|
63 |
+
model.encoder = model.encoder.cuda()
|
64 |
+
else:
|
65 |
+
use_cuda = False
|
66 |
+
|
67 |
+
#target_layers = [model.blocks[-1].norm1] ## For ViT model
|
68 |
+
#target_layers = model.blocks[-1].norm1 ## For EfficientNet-B7 model
|
69 |
+
#target_layers = [model.encoder.encoder.layer[-1].layernorm_before] ## For ViT-based VisionEncoderDecoder model
|
70 |
+
target_layers = [model.encoder.encoder.layers[-1].blocks[-0].layernorm_after, model.encoder.encoder.layers[-1].blocks[-1].layernorm_after] ## [model.encoder.encoder.layers[-1].blocks[-1].layernorm_before, model.encoder.encoder.layers[-1].blocks[0].layernorm_before] For Swin-based VisionEncoderDecoder model
|
71 |
+
|
72 |
+
|
73 |
+
if method == "ablationcam":
|
74 |
+
cam = methods[method](model=model.encoder,
|
75 |
+
target_layers=target_layers,
|
76 |
+
use_cuda=use_cuda,
|
77 |
+
reshape_transform=reshape_transform,
|
78 |
+
ablation_layer=AblationLayerVit())
|
79 |
+
else:
|
80 |
+
cam = methods[method](model=model.encoder,
|
81 |
+
target_layers=target_layers,
|
82 |
+
use_cuda=use_cuda,
|
83 |
+
reshape_transform=reshape_transform)
|
84 |
+
|
85 |
+
rgb_img = cv2.imread(image_path, 1)[:, :, ::-1]
|
86 |
+
rgb_img = cv2.resize(rgb_img, (384, 384)) ## (224, 224)
|
87 |
+
rgb_img = np.float32(rgb_img) / 255
|
88 |
+
input_tensor = preprocess_image(rgb_img, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
89 |
+
|
90 |
+
targets = None
|
91 |
+
cam.batch_size = 16
|
92 |
+
|
93 |
+
grayscale_cam = cam(input_tensor=input_tensor, targets=targets, eigen_smooth=eigen_smooth, aug_smooth=aug_smooth)
|
94 |
+
grayscale_cam = grayscale_cam[0, :]
|
95 |
+
|
96 |
+
cam_image = show_cam_on_image(rgb_img, grayscale_cam)
|
97 |
+
output_file = os.path.join(output_path, 'gradcam_result.png')
|
98 |
+
cv2.imwrite(output_file, cam_image)
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
def reshape_transform(tensor, height=12, width=12): ### height=14, width=14 for ViT-based Model
|
103 |
+
batch_size, token_number, embed_dim = tensor.size()
|
104 |
+
if token_number < height * width:
|
105 |
+
pad = torch.zeros(batch_size, height * width - token_number, embed_dim, device=tensor.device)
|
106 |
+
tensor = torch.cat([tensor, pad], dim=1)
|
107 |
+
elif token_number > height * width:
|
108 |
+
tensor = tensor[:, :height * width, :]
|
109 |
+
|
110 |
+
result = tensor.reshape(batch_size, height, width, embed_dim)
|
111 |
+
result = result.transpose(2, 3).transpose(1, 2)
|
112 |
+
return result
|
113 |
+
|
114 |
+
|
115 |
+
# Example usage:
|
116 |
+
#image_path = "/home/chayan/CGI_Net/images/images/CXR1353_IM-0230-1001.png"
|
117 |
+
model_path = "./Model/"
|
118 |
+
output_path = "./CAM-Result/"
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
def sentence_case(paragraph):
|
123 |
+
sentences = paragraph.split('. ')
|
124 |
+
formatted_sentences = [sentence.capitalize() for sentence in sentences if sentence]
|
125 |
+
formatted_paragraph = '. '.join(formatted_sentences)
|
126 |
+
return formatted_paragraph
|
127 |
+
|
128 |
+
def num2sym_bullets(text, bullet='-'):
|
129 |
+
"""
|
130 |
+
Replaces '<num>.' bullet points with a specified symbol and formats the text as a bullet list.
|
131 |
+
|
132 |
+
Args:
|
133 |
+
text (str): Input text containing '<num>.' bullet points.
|
134 |
+
bullet (str): The symbol to replace '<num>.' with.
|
135 |
+
|
136 |
+
Returns:
|
137 |
+
str: Modified text with '<num>.' replaced and formatted as a bullet list.
|
138 |
+
"""
|
139 |
+
sentences = re.split(r'<num>\.\s', text)
|
140 |
+
formatted_text = '\n'.join(f'{bullet} {sentence.strip()}' for sentence in sentences if sentence.strip())
|
141 |
+
return formatted_text
|
142 |
+
|
143 |
+
def is_cxr(image_path):
|
144 |
+
"""
|
145 |
+
Checks if the uploaded image is a Chest X-ray using basic image processing.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
image_path (str): Path to the uploaded image.
|
149 |
+
|
150 |
+
Returns:
|
151 |
+
bool: True if the image is likely a Chest X-ray, False otherwise.
|
152 |
+
"""
|
153 |
+
try:
|
154 |
+
|
155 |
+
image = cv2.imread(image_path)
|
156 |
+
|
157 |
+
if image is None:
|
158 |
+
raise ValueError("Invalid image path.")
|
159 |
+
|
160 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
161 |
+
color_std = np.std(image, axis=2).mean()
|
162 |
+
|
163 |
+
if color_std > 0:
|
164 |
+
return False
|
165 |
+
|
166 |
+
return True
|
167 |
+
|
168 |
+
except Exception as e:
|
169 |
+
print(f"Error processing image: {e}")
|
170 |
+
return False
|
171 |
+
|
172 |
+
def dicom_to_png(dicom_file, png_file):
|
173 |
+
# Load DICOM file
|
174 |
+
dicom_data = pydicom.dcmread(dicom_file)
|
175 |
+
dicom_data.PhotometricInterpretation = 'MONOCHROME1'
|
176 |
+
|
177 |
+
# Normalize pixel values to 0-255
|
178 |
+
img = dicom_data.pixel_array
|
179 |
+
img = img.astype(np.float32)
|
180 |
+
|
181 |
+
img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX)
|
182 |
+
img = img.astype(np.uint8)
|
183 |
+
|
184 |
+
# Save as PNG
|
185 |
+
cv2.imwrite(png_file, img)
|
186 |
+
return img
|
187 |
+
|
188 |
+
|
189 |
+
Image_Captioner = pipeline("image-to-text", model = "./Model/", device = 0)
|
190 |
+
|
191 |
+
data_dir = "./CAM-Result"
|
192 |
+
|
193 |
+
@spaces.GPU(duration=300)
|
194 |
+
def xray_report_generator(Image_file, Query):
|
195 |
+
if Image_file[-4:] =='.dcm':
|
196 |
+
png_file = 'DCM2PNG.png'
|
197 |
+
dicom_to_png(Image_file, png_file)
|
198 |
+
Image_file = os.path.join(data_dir, png_file)
|
199 |
+
output = Image_Captioner(Image_file, max_new_tokens=512)
|
200 |
+
|
201 |
+
else:
|
202 |
+
output = Image_Captioner(Image_file, max_new_tokens=512)
|
203 |
+
|
204 |
+
result = output[0]['generated_text']
|
205 |
+
output_paragraph = sentence_case(result)
|
206 |
+
|
207 |
+
final_response = num2sym_bullets(output_paragraph, bullet='-')
|
208 |
+
|
209 |
+
query_prompt = f""" You are analyzing the doctor's query based on the patient's history and the generated chest X-ray report. Extract only the information relevant to the query.
|
210 |
+
If the report mentions the queried condition, write only the exact wording without any introduction. If the condition is not mentioned, respond with: 'No relevant findings related to [query condition].'.
|
211 |
+
"""
|
212 |
+
|
213 |
+
#If the condition is negated, respond with: 'There is no [query condition].'.
|
214 |
+
|
215 |
+
completion = client.chat.completions.create(
|
216 |
+
model="gpt-4-turbo", ### gpt-4-turbo ### gpt-3.5-turbo-0125
|
217 |
+
messages=[
|
218 |
+
{"role": "system", "content": query_prompt},
|
219 |
+
{"role": "user", "content": f"Generated Report: {final_response}\nHistory/Doctor's Query: {Query}"}
|
220 |
+
],
|
221 |
+
temperature=0.2)
|
222 |
+
query_response = completion.choices[0].message.content
|
223 |
+
|
224 |
+
generate_gradcam(Image_file, model_path, output_path, method='gradcam', use_cuda=True)
|
225 |
+
|
226 |
+
grad_cam_image = output_path + 'gradcam_result.png'
|
227 |
+
|
228 |
+
return grad_cam_image, final_response, query_response
|
229 |
+
|
230 |
+
|
231 |
+
# def save_feedback(feedback):
|
232 |
+
# feedback_dir = "Chayan/Feedback/" # Update this to your desired directory
|
233 |
+
# if not os.path.exists(feedback_dir):
|
234 |
+
# os.makedirs(feedback_dir)
|
235 |
+
# feedback_file = os.path.join(feedback_dir, "feedback.txt")
|
236 |
+
# with open(feedback_file, "a") as f:
|
237 |
+
# f.write(feedback + "\n")
|
238 |
+
# return "Feedback submitted successfully!"
|
239 |
+
|
240 |
+
|
241 |
+
def save_feedback(feedback):
|
242 |
+
feedback_dir = "Chayan/Feedback/" # Update this to your desired directory
|
243 |
+
if not os.path.exists(feedback_dir):
|
244 |
+
os.makedirs(feedback_dir)
|
245 |
+
feedback_file = os.path.join(feedback_dir, "feedback.txt")
|
246 |
+
|
247 |
+
try:
|
248 |
+
with open(feedback_file, "a") as f:
|
249 |
+
f.write(feedback + "\n")
|
250 |
+
print(f"Feedback saved at: {feedback_file}")
|
251 |
+
return "Feedback submitted successfully!"
|
252 |
+
except Exception as e:
|
253 |
+
print(f"Error saving feedback: {e}")
|
254 |
+
return "Failed to submit feedback!"
|
255 |
+
|
256 |
+
|
257 |
+
# Custom Theme Definition
|
258 |
+
class Seafoam(Base):
|
259 |
+
def __init__(
|
260 |
+
self,
|
261 |
+
*,
|
262 |
+
primary_hue: Union[colors.Color, str] = colors.emerald,
|
263 |
+
secondary_hue: Union[colors.Color, str] = colors.blue,
|
264 |
+
neutral_hue: Union[colors.Color, str] = colors.gray,
|
265 |
+
spacing_size: Union[sizes.Size, str] = sizes.spacing_md,
|
266 |
+
radius_size: Union[sizes.Size, str] = sizes.radius_md,
|
267 |
+
text_size: Union[sizes.Size, str] = sizes.text_lg,
|
268 |
+
font: Union[fonts.Font, str, Iterable[Union[fonts.Font, str]]] = (
|
269 |
+
fonts.GoogleFont("Quicksand"),
|
270 |
+
"ui-sans-serif",
|
271 |
+
"sans-serif",
|
272 |
+
),
|
273 |
+
font_mono: Union[fonts.Font, str, Iterable[Union[fonts.Font, str]]] = (
|
274 |
+
fonts.GoogleFont("IBM Plex Mono"),
|
275 |
+
"ui-monospace",
|
276 |
+
"monospace",
|
277 |
+
),
|
278 |
+
):
|
279 |
+
super().__init__(
|
280 |
+
primary_hue=primary_hue,
|
281 |
+
secondary_hue=secondary_hue,
|
282 |
+
neutral_hue=neutral_hue,
|
283 |
+
spacing_size=spacing_size,
|
284 |
+
radius_size=radius_size,
|
285 |
+
text_size=text_size,
|
286 |
+
font=font,
|
287 |
+
font_mono=font_mono,
|
288 |
+
)
|
289 |
+
|
290 |
+
self.set(
|
291 |
+
body_background_fill="linear-gradient(114.2deg, rgba(184,215,21,1) -15.3%, rgba(21,215,98,1) 14.5%, rgba(21,215,182,1) 38.7%, rgba(129,189,240,1) 58.8%, rgba(219,108,205,1) 77.3%, rgba(240,129,129,1) 88.5%)"
|
292 |
+
)
|
293 |
+
# Initialize the theme
|
294 |
+
seafoam = Seafoam()
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
# Custom CSS styles
|
299 |
+
custom_css = """
|
300 |
+
<style>
|
301 |
+
|
302 |
+
/* Set background color for the entire Gradio app */
|
303 |
+
body, .gradio-container {
|
304 |
+
background-color: #f2f7f5 !important;
|
305 |
+
}
|
306 |
+
|
307 |
+
/* Optional: Add padding or margin for aesthetics */
|
308 |
+
.gradio-container {
|
309 |
+
padding: 20px;
|
310 |
+
}
|
311 |
+
|
312 |
+
#title {
|
313 |
+
color: green;
|
314 |
+
font-size: 36px;
|
315 |
+
font-weight: bold;
|
316 |
+
}
|
317 |
+
#description {
|
318 |
+
color: green;
|
319 |
+
font-size: 22px;
|
320 |
+
}
|
321 |
+
|
322 |
+
#title-row {
|
323 |
+
display: flex;
|
324 |
+
align-items: center;
|
325 |
+
gap: 10px;
|
326 |
+
margin-bottom: 0px;
|
327 |
+
}
|
328 |
+
#title-header h1 {
|
329 |
+
margin: 0;
|
330 |
+
}
|
331 |
+
|
332 |
+
|
333 |
+
#submit-btn {
|
334 |
+
background-color: #f5dec6; /* Banana leaf */
|
335 |
+
color: green;
|
336 |
+
padding: 15px 32px;
|
337 |
+
text-align: center;
|
338 |
+
text-decoration: none;
|
339 |
+
display: inline-block;
|
340 |
+
font-size: 30px;
|
341 |
+
margin: 4px 2px;
|
342 |
+
cursor: pointer;
|
343 |
+
}
|
344 |
+
#submit-btn:hover {
|
345 |
+
background-color: #00FFFF;
|
346 |
+
}
|
347 |
+
|
348 |
+
|
349 |
+
.intext textarea {
|
350 |
+
color: green;
|
351 |
+
font-size: 20px;
|
352 |
+
font-weight: bold;
|
353 |
+
}
|
354 |
+
|
355 |
+
|
356 |
+
.small-button {
|
357 |
+
color: green;
|
358 |
+
padding: 5px 10px;
|
359 |
+
font-size: 20px;
|
360 |
+
}
|
361 |
+
|
362 |
+
</style>
|
363 |
+
"""
|
364 |
+
|
365 |
+
# Sample image paths
|
366 |
+
sample_images = [
|
367 |
+
"./Test-Images/0d930f0a-46f813a9-db3b137b-05142eef-eca3c5a7.jpg",
|
368 |
+
"./Test-Images/93681764-ec39480e-0518b12c-199850c2-f15118ab.jpg",
|
369 |
+
"./Test-Images/6ff741e9-6ea01eef-1bf10153-d1b6beba-590b6620.jpg"
|
370 |
+
#"sample4.png",
|
371 |
+
#"sample5.png"
|
372 |
+
]
|
373 |
+
|
374 |
+
def set_input_image(image_path):
|
375 |
+
return gr.update(value=image_path)
|
376 |
+
|
377 |
+
def show_contact_info():
|
378 |
+
yield gr.update(visible=True, value="""
|
379 |
+
**Contact Us:**
|
380 |
+
- Chayan Mondal
|
381 |
+
- Email: [email protected]
|
382 |
+
- Associate Prof. Sonny Pham
|
383 |
+
- Email: [email protected]
|
384 |
+
- Dr. Ashu Gupta
|
385 |
+
- Email: [email protected]
|
386 |
+
""")
|
387 |
+
# Wait for 20 seconds (you can adjust the time as needed)
|
388 |
+
time.sleep(20)
|
389 |
+
# Hide the content after 5 seconds
|
390 |
+
yield gr.update(visible=False)
|
391 |
+
|
392 |
+
def show_acknowledgment():
|
393 |
+
yield gr.update(visible=True, value="""
|
394 |
+
**Acknowledgment:**
|
395 |
+
This Research has been supported by the Western Australian Future Health Research and Innovation Fund.
|
396 |
+
""")
|
397 |
+
# Wait for 20 seconds
|
398 |
+
time.sleep(20)
|
399 |
+
# Hide the acknowledgment
|
400 |
+
yield gr.update(visible=False)
|
401 |
+
|
402 |
+
|
403 |
+
with gr.Blocks(theme=seafoam, css=custom_css) as demo:
|
404 |
+
|
405 |
+
#gr.HTML(custom_css) # Inject custom CSS
|
406 |
+
|
407 |
+
|
408 |
+
with gr.Row(elem_id="title-row"):
|
409 |
+
with gr.Column(scale=0):
|
410 |
+
gr.Image(
|
411 |
+
value="./AURA-CXR-Logo.png",
|
412 |
+
show_label=False,
|
413 |
+
width=60,
|
414 |
+
container=False
|
415 |
+
)
|
416 |
+
with gr.Column():
|
417 |
+
gr.Markdown(
|
418 |
+
"""
|
419 |
+
<h1 style="color:blue; font-size: 32px; font-weight: bold; margin: 0;">
|
420 |
+
AURA-CXR: Explainable Diagnosis of Chest Diseases from X-rays
|
421 |
+
</h1>
|
422 |
+
""",
|
423 |
+
elem_id="title-header"
|
424 |
+
)
|
425 |
+
|
426 |
+
gr.Markdown(
|
427 |
+
"<p id='description'>Upload an X-ray image and get its report with heat-map visualization.</p>"
|
428 |
+
)
|
429 |
+
|
430 |
+
|
431 |
+
|
432 |
+
# gr.Markdown(
|
433 |
+
# """
|
434 |
+
# <h1 style="color:blue; font-size: 36px; font-weight: bold; margin: 0;">AURA-CXR: Explainable Diagnosis of Chest Diseases from X-rays</h1>
|
435 |
+
# <p id="description">Upload an X-ray image and get its report with heat-map visualization.</p>
|
436 |
+
# """
|
437 |
+
# )
|
438 |
+
|
439 |
+
#<h1 style="color:blue; font-size: 36px; font-weight: bold">AURA-CXR: Explainable Diagnosis of Chest Diseases from X-rays</h1>
|
440 |
+
|
441 |
+
with gr.Row():
|
442 |
+
inputs = gr.File(label="Upload Chest X-ray Image File", type="filepath")
|
443 |
+
|
444 |
+
with gr.Row():
|
445 |
+
with gr.Column(scale=1, min_width=300):
|
446 |
+
outputs1 = gr.Image(label="Image Viewer")
|
447 |
+
history_query = gr.Textbox(label="History/Doctor's Query", elem_classes="intext")
|
448 |
+
with gr.Column(scale=1, min_width=300):
|
449 |
+
outputs2 = gr.Image(label="Grad_CAM-Visualization")
|
450 |
+
with gr.Column(scale=1, min_width=300):
|
451 |
+
outputs3 = gr.Textbox(label="Generated Report", elem_classes = "intext")
|
452 |
+
outputs4 = gr.Textbox(label = "Query's Response", elem_classes = "intext")
|
453 |
+
|
454 |
+
|
455 |
+
submit_btn = gr.Button("Generate Report", elem_id="submit-btn", variant="primary")
|
456 |
+
|
457 |
+
def show_image(file_path):
|
458 |
+
if is_cxr(file_path): # Check if it's a valid Chest X-ray
|
459 |
+
return file_path, "Valid Image" # Show the image in Image Viewer
|
460 |
+
else:
|
461 |
+
return None, "Invalid image. Please upload a proper Chest X-ray."
|
462 |
+
|
463 |
+
|
464 |
+
# Show the uploaded image immediately in the Image Viewer
|
465 |
+
inputs.change(
|
466 |
+
fn=show_image, # Calls the function to return the same file path
|
467 |
+
inputs=inputs,
|
468 |
+
outputs=[outputs1, outputs3]
|
469 |
+
)
|
470 |
+
|
471 |
+
|
472 |
+
|
473 |
+
|
474 |
+
submit_btn.click(
|
475 |
+
fn=xray_report_generator,
|
476 |
+
inputs=[inputs,history_query],
|
477 |
+
outputs=[outputs2, outputs3, outputs4])
|
478 |
+
|
479 |
+
|
480 |
+
gr.Markdown(
|
481 |
+
"""
|
482 |
+
<h2 style="color:green; font-size: 24px;">Or choose a sample image:</h2>
|
483 |
+
"""
|
484 |
+
)
|
485 |
+
|
486 |
+
with gr.Row():
|
487 |
+
for idx, sample_image in enumerate(sample_images):
|
488 |
+
with gr.Column(scale=1):
|
489 |
+
#sample_image_component = gr.Image(value=sample_image, interactive=False)
|
490 |
+
select_button = gr.Button(f"Select Sample Image {idx+1}")
|
491 |
+
select_button.click(
|
492 |
+
fn=set_input_image,
|
493 |
+
inputs=gr.State(value=sample_image),
|
494 |
+
outputs=inputs
|
495 |
+
)
|
496 |
+
|
497 |
+
|
498 |
+
# Feedback section
|
499 |
+
gr.Markdown(
|
500 |
+
"""
|
501 |
+
<h2 style="color:green; font-size: 24px;">Provide Your Valuable Feedback:</h2>
|
502 |
+
"""
|
503 |
+
)
|
504 |
+
|
505 |
+
with gr.Row():
|
506 |
+
feedback_input = gr.Textbox(label="Your Feedback", lines=4, placeholder="Enter your feedback here...")
|
507 |
+
feedback_submit_btn = gr.Button("Submit Feedback", elem_classes="small-button", variant="secondary")
|
508 |
+
feedback_output = gr.Textbox(label="Feedback Status", interactive=False)
|
509 |
+
|
510 |
+
|
511 |
+
|
512 |
+
feedback_submit_btn.click(
|
513 |
+
fn=save_feedback,
|
514 |
+
inputs=feedback_input,
|
515 |
+
outputs=feedback_output
|
516 |
+
)
|
517 |
+
|
518 |
+
|
519 |
+
# Buttons and Markdown for Contact Us and Acknowledgment
|
520 |
+
with gr.Row():
|
521 |
+
contact_btn = gr.Button("Contact Us", elem_classes="small-button", variant="secondary")
|
522 |
+
ack_btn = gr.Button("Acknowledgment", elem_classes="small-button", variant="secondary")
|
523 |
+
|
524 |
+
contact_info = gr.Markdown(visible=False) # Initially hidden
|
525 |
+
acknowledgment_info = gr.Markdown(visible=False) # Initially hidden
|
526 |
+
|
527 |
+
# Update the content and make it visible when the buttons are clicked
|
528 |
+
contact_btn.click(fn=show_contact_info, outputs=contact_info, show_progress=False)
|
529 |
+
ack_btn.click(fn=show_acknowledgment, outputs=acknowledgment_info, show_progress=False)
|
530 |
+
|
531 |
+
# Update the content and make it visible when the buttons are clicked
|
532 |
+
# contact_btn.click(fn=show_contact_info, outputs=contact_info, show_progress=False)
|
533 |
+
# ack_btn.click(fn=show_acknowledgment, outputs=acknowledgment_info, show_progress=False)
|
534 |
+
|
535 |
+
|
536 |
+
demo.launch(share=True)
|
537 |
+
|
Feedback/feedback.txt
ADDED
File without changes
|
Model/config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Model/generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 50256,
|
3 |
+
"eos_token_id": 50256,
|
4 |
+
"max_length": 200,
|
5 |
+
"transformers_version": "4.37.1"
|
6 |
+
}
|
Model/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb50b4debdf509c1f8c4dbbf344031528969f45426d358c62d39edcad08452ea
|
3 |
+
size 965957568
|
Model/preprocessor_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"do_rescale": true,
|
4 |
+
"do_resize": true,
|
5 |
+
"image_mean": [
|
6 |
+
0.485,
|
7 |
+
0.456,
|
8 |
+
0.406
|
9 |
+
],
|
10 |
+
"feature_extractor_type": "ViTFeatureExtractor",
|
11 |
+
"image_std": [
|
12 |
+
0.229,
|
13 |
+
0.224,
|
14 |
+
0.225
|
15 |
+
],
|
16 |
+
"resample": 3,
|
17 |
+
"rescale_factor": 0.00392156862745098,
|
18 |
+
"size": {
|
19 |
+
"height": 384,
|
20 |
+
"width": 384
|
21 |
+
}
|
22 |
+
}
|
Model/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ed7612de6b8d4c06ccacb9ae48d72f25eaa405bb7d12ebc21c86121cca30197
|
3 |
+
size 14575
|
Model/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9f8ff02ac948318fd4b1db36c6dc3626126a027e501925cfc3bd76ac45c3505
|
3 |
+
size 627
|
Model/special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<|endoftext|>",
|
3 |
+
"eos_token": "<|endoftext|>",
|
4 |
+
"pad_token": "<|endoftext|>",
|
5 |
+
"unk_token": "<|endoftext|>"
|
6 |
+
}
|
Model/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Model/tokenizer_config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"50256": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
}
|
12 |
+
},
|
13 |
+
"bos_token": "<|endoftext|>",
|
14 |
+
"clean_up_tokenization_spaces": true,
|
15 |
+
"eos_token": "<|endoftext|>",
|
16 |
+
"model_max_length": 1024,
|
17 |
+
"pad_token": "<|endoftext|>",
|
18 |
+
"tokenizer_class": "GPT2Tokenizer",
|
19 |
+
"unk_token": "<|endoftext|>"
|
20 |
+
}
|
Model/trainer_state.json
ADDED
@@ -0,0 +1,536 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.0629316121339798,
|
3 |
+
"best_model_checkpoint": "./Swin-GPT2_Mimic/checkpoint-37500",
|
4 |
+
"epoch": 5.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 37500,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.07,
|
13 |
+
"learning_rate": 4.9833333333333336e-05,
|
14 |
+
"loss": 0.1362,
|
15 |
+
"step": 500
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.13,
|
19 |
+
"learning_rate": 4.966666666666667e-05,
|
20 |
+
"loss": 0.089,
|
21 |
+
"step": 1000
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.2,
|
25 |
+
"learning_rate": 4.9500000000000004e-05,
|
26 |
+
"loss": 0.0805,
|
27 |
+
"step": 1500
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.27,
|
31 |
+
"learning_rate": 4.933333333333334e-05,
|
32 |
+
"loss": 0.0779,
|
33 |
+
"step": 2000
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.33,
|
37 |
+
"learning_rate": 4.9166666666666665e-05,
|
38 |
+
"loss": 0.0775,
|
39 |
+
"step": 2500
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"learning_rate": 4.9e-05,
|
44 |
+
"loss": 0.0763,
|
45 |
+
"step": 3000
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.47,
|
49 |
+
"learning_rate": 4.883333333333334e-05,
|
50 |
+
"loss": 0.0749,
|
51 |
+
"step": 3500
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.53,
|
55 |
+
"learning_rate": 4.866666666666667e-05,
|
56 |
+
"loss": 0.0702,
|
57 |
+
"step": 4000
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.6,
|
61 |
+
"learning_rate": 4.85e-05,
|
62 |
+
"loss": 0.0701,
|
63 |
+
"step": 4500
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.67,
|
67 |
+
"learning_rate": 4.8333333333333334e-05,
|
68 |
+
"loss": 0.0715,
|
69 |
+
"step": 5000
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.73,
|
73 |
+
"learning_rate": 4.8166666666666674e-05,
|
74 |
+
"loss": 0.0725,
|
75 |
+
"step": 5500
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.8,
|
79 |
+
"learning_rate": 4.8e-05,
|
80 |
+
"loss": 0.0677,
|
81 |
+
"step": 6000
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.87,
|
85 |
+
"learning_rate": 4.7833333333333335e-05,
|
86 |
+
"loss": 0.0696,
|
87 |
+
"step": 6500
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.93,
|
91 |
+
"learning_rate": 4.766666666666667e-05,
|
92 |
+
"loss": 0.065,
|
93 |
+
"step": 7000
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 1.0,
|
97 |
+
"learning_rate": 4.75e-05,
|
98 |
+
"loss": 0.0646,
|
99 |
+
"step": 7500
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 1.0,
|
103 |
+
"eval_gen_len": 8.897,
|
104 |
+
"eval_loss": 0.06988305598497391,
|
105 |
+
"eval_rouge1": 34.7412,
|
106 |
+
"eval_rouge2": 25.6954,
|
107 |
+
"eval_rougeL": 34.4803,
|
108 |
+
"eval_rougeLsum": 34.7871,
|
109 |
+
"eval_runtime": 103.0848,
|
110 |
+
"eval_samples_per_second": 9.701,
|
111 |
+
"eval_steps_per_second": 1.213,
|
112 |
+
"step": 7500
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"epoch": 1.07,
|
116 |
+
"learning_rate": 4.7333333333333336e-05,
|
117 |
+
"loss": 0.0651,
|
118 |
+
"step": 8000
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"epoch": 1.13,
|
122 |
+
"learning_rate": 4.716666666666667e-05,
|
123 |
+
"loss": 0.0647,
|
124 |
+
"step": 8500
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"epoch": 1.2,
|
128 |
+
"learning_rate": 4.7e-05,
|
129 |
+
"loss": 0.0644,
|
130 |
+
"step": 9000
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 1.27,
|
134 |
+
"learning_rate": 4.683333333333334e-05,
|
135 |
+
"loss": 0.0613,
|
136 |
+
"step": 9500
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.33,
|
140 |
+
"learning_rate": 4.666666666666667e-05,
|
141 |
+
"loss": 0.0664,
|
142 |
+
"step": 10000
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 1.4,
|
146 |
+
"learning_rate": 4.6500000000000005e-05,
|
147 |
+
"loss": 0.0631,
|
148 |
+
"step": 10500
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"epoch": 1.47,
|
152 |
+
"learning_rate": 4.633333333333333e-05,
|
153 |
+
"loss": 0.0623,
|
154 |
+
"step": 11000
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 1.53,
|
158 |
+
"learning_rate": 4.6166666666666666e-05,
|
159 |
+
"loss": 0.0612,
|
160 |
+
"step": 11500
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"epoch": 1.6,
|
164 |
+
"learning_rate": 4.600000000000001e-05,
|
165 |
+
"loss": 0.062,
|
166 |
+
"step": 12000
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.67,
|
170 |
+
"learning_rate": 4.5833333333333334e-05,
|
171 |
+
"loss": 0.0605,
|
172 |
+
"step": 12500
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"epoch": 1.73,
|
176 |
+
"learning_rate": 4.566666666666667e-05,
|
177 |
+
"loss": 0.0619,
|
178 |
+
"step": 13000
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 1.8,
|
182 |
+
"learning_rate": 4.55e-05,
|
183 |
+
"loss": 0.062,
|
184 |
+
"step": 13500
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 1.87,
|
188 |
+
"learning_rate": 4.5333333333333335e-05,
|
189 |
+
"loss": 0.0622,
|
190 |
+
"step": 14000
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"epoch": 1.93,
|
194 |
+
"learning_rate": 4.516666666666667e-05,
|
195 |
+
"loss": 0.06,
|
196 |
+
"step": 14500
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 2.0,
|
200 |
+
"learning_rate": 4.5e-05,
|
201 |
+
"loss": 0.0597,
|
202 |
+
"step": 15000
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"epoch": 2.0,
|
206 |
+
"eval_gen_len": 14.724,
|
207 |
+
"eval_loss": 0.06516863405704498,
|
208 |
+
"eval_rouge1": 38.0809,
|
209 |
+
"eval_rouge2": 26.9533,
|
210 |
+
"eval_rougeL": 37.259,
|
211 |
+
"eval_rougeLsum": 37.8078,
|
212 |
+
"eval_runtime": 113.6453,
|
213 |
+
"eval_samples_per_second": 8.799,
|
214 |
+
"eval_steps_per_second": 1.1,
|
215 |
+
"step": 15000
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"epoch": 2.07,
|
219 |
+
"learning_rate": 4.483333333333333e-05,
|
220 |
+
"loss": 0.0559,
|
221 |
+
"step": 15500
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 2.13,
|
225 |
+
"learning_rate": 4.466666666666667e-05,
|
226 |
+
"loss": 0.0595,
|
227 |
+
"step": 16000
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 2.2,
|
231 |
+
"learning_rate": 4.4500000000000004e-05,
|
232 |
+
"loss": 0.0569,
|
233 |
+
"step": 16500
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 2.27,
|
237 |
+
"learning_rate": 4.433333333333334e-05,
|
238 |
+
"loss": 0.0558,
|
239 |
+
"step": 17000
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 2.33,
|
243 |
+
"learning_rate": 4.4166666666666665e-05,
|
244 |
+
"loss": 0.0578,
|
245 |
+
"step": 17500
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"epoch": 2.4,
|
249 |
+
"learning_rate": 4.4000000000000006e-05,
|
250 |
+
"loss": 0.0571,
|
251 |
+
"step": 18000
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"epoch": 2.47,
|
255 |
+
"learning_rate": 4.383333333333334e-05,
|
256 |
+
"loss": 0.0586,
|
257 |
+
"step": 18500
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 2.53,
|
261 |
+
"learning_rate": 4.3666666666666666e-05,
|
262 |
+
"loss": 0.0577,
|
263 |
+
"step": 19000
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 2.6,
|
267 |
+
"learning_rate": 4.35e-05,
|
268 |
+
"loss": 0.0583,
|
269 |
+
"step": 19500
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 2.67,
|
273 |
+
"learning_rate": 4.3333333333333334e-05,
|
274 |
+
"loss": 0.0574,
|
275 |
+
"step": 20000
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 2.73,
|
279 |
+
"learning_rate": 4.316666666666667e-05,
|
280 |
+
"loss": 0.0563,
|
281 |
+
"step": 20500
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 2.8,
|
285 |
+
"learning_rate": 4.3e-05,
|
286 |
+
"loss": 0.057,
|
287 |
+
"step": 21000
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"epoch": 2.87,
|
291 |
+
"learning_rate": 4.2833333333333335e-05,
|
292 |
+
"loss": 0.0559,
|
293 |
+
"step": 21500
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 2.93,
|
297 |
+
"learning_rate": 4.266666666666667e-05,
|
298 |
+
"loss": 0.0565,
|
299 |
+
"step": 22000
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 3.0,
|
303 |
+
"learning_rate": 4.25e-05,
|
304 |
+
"loss": 0.0577,
|
305 |
+
"step": 22500
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 3.0,
|
309 |
+
"eval_gen_len": 13.501,
|
310 |
+
"eval_loss": 0.06393314898014069,
|
311 |
+
"eval_rouge1": 37.8142,
|
312 |
+
"eval_rouge2": 26.9542,
|
313 |
+
"eval_rougeL": 37.076,
|
314 |
+
"eval_rougeLsum": 37.5874,
|
315 |
+
"eval_runtime": 112.3223,
|
316 |
+
"eval_samples_per_second": 8.903,
|
317 |
+
"eval_steps_per_second": 1.113,
|
318 |
+
"step": 22500
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 3.07,
|
322 |
+
"learning_rate": 4.233333333333334e-05,
|
323 |
+
"loss": 0.0511,
|
324 |
+
"step": 23000
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 3.13,
|
328 |
+
"learning_rate": 4.216666666666667e-05,
|
329 |
+
"loss": 0.0526,
|
330 |
+
"step": 23500
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"epoch": 3.2,
|
334 |
+
"learning_rate": 4.2e-05,
|
335 |
+
"loss": 0.0514,
|
336 |
+
"step": 24000
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"epoch": 3.27,
|
340 |
+
"learning_rate": 4.183333333333334e-05,
|
341 |
+
"loss": 0.053,
|
342 |
+
"step": 24500
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"epoch": 3.33,
|
346 |
+
"learning_rate": 4.166666666666667e-05,
|
347 |
+
"loss": 0.0526,
|
348 |
+
"step": 25000
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"epoch": 3.4,
|
352 |
+
"learning_rate": 4.15e-05,
|
353 |
+
"loss": 0.0542,
|
354 |
+
"step": 25500
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.47,
|
358 |
+
"learning_rate": 4.133333333333333e-05,
|
359 |
+
"loss": 0.0533,
|
360 |
+
"step": 26000
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 3.53,
|
364 |
+
"learning_rate": 4.116666666666667e-05,
|
365 |
+
"loss": 0.0537,
|
366 |
+
"step": 26500
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 3.6,
|
370 |
+
"learning_rate": 4.1e-05,
|
371 |
+
"loss": 0.0519,
|
372 |
+
"step": 27000
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"epoch": 3.67,
|
376 |
+
"learning_rate": 4.0833333333333334e-05,
|
377 |
+
"loss": 0.0532,
|
378 |
+
"step": 27500
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"epoch": 3.73,
|
382 |
+
"learning_rate": 4.066666666666667e-05,
|
383 |
+
"loss": 0.0538,
|
384 |
+
"step": 28000
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.8,
|
388 |
+
"learning_rate": 4.05e-05,
|
389 |
+
"loss": 0.0533,
|
390 |
+
"step": 28500
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"epoch": 3.87,
|
394 |
+
"learning_rate": 4.0333333333333336e-05,
|
395 |
+
"loss": 0.0544,
|
396 |
+
"step": 29000
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 3.93,
|
400 |
+
"learning_rate": 4.016666666666667e-05,
|
401 |
+
"loss": 0.0536,
|
402 |
+
"step": 29500
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 4.0,
|
406 |
+
"learning_rate": 4e-05,
|
407 |
+
"loss": 0.0528,
|
408 |
+
"step": 30000
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 4.0,
|
412 |
+
"eval_gen_len": 11.784,
|
413 |
+
"eval_loss": 0.06298327445983887,
|
414 |
+
"eval_rouge1": 37.8876,
|
415 |
+
"eval_rouge2": 26.9586,
|
416 |
+
"eval_rougeL": 37.2585,
|
417 |
+
"eval_rougeLsum": 37.7378,
|
418 |
+
"eval_runtime": 109.3283,
|
419 |
+
"eval_samples_per_second": 9.147,
|
420 |
+
"eval_steps_per_second": 1.143,
|
421 |
+
"step": 30000
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 4.07,
|
425 |
+
"learning_rate": 3.983333333333333e-05,
|
426 |
+
"loss": 0.0488,
|
427 |
+
"step": 30500
|
428 |
+
},
|
429 |
+
{
|
430 |
+
"epoch": 4.13,
|
431 |
+
"learning_rate": 3.966666666666667e-05,
|
432 |
+
"loss": 0.0475,
|
433 |
+
"step": 31000
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"epoch": 4.2,
|
437 |
+
"learning_rate": 3.9500000000000005e-05,
|
438 |
+
"loss": 0.0487,
|
439 |
+
"step": 31500
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"epoch": 4.27,
|
443 |
+
"learning_rate": 3.933333333333333e-05,
|
444 |
+
"loss": 0.0493,
|
445 |
+
"step": 32000
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 4.33,
|
449 |
+
"learning_rate": 3.9166666666666665e-05,
|
450 |
+
"loss": 0.0482,
|
451 |
+
"step": 32500
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.4,
|
455 |
+
"learning_rate": 3.9000000000000006e-05,
|
456 |
+
"loss": 0.0504,
|
457 |
+
"step": 33000
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 4.47,
|
461 |
+
"learning_rate": 3.883333333333333e-05,
|
462 |
+
"loss": 0.0495,
|
463 |
+
"step": 33500
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"epoch": 4.53,
|
467 |
+
"learning_rate": 3.866666666666667e-05,
|
468 |
+
"loss": 0.0477,
|
469 |
+
"step": 34000
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"epoch": 4.6,
|
473 |
+
"learning_rate": 3.85e-05,
|
474 |
+
"loss": 0.049,
|
475 |
+
"step": 34500
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"epoch": 4.67,
|
479 |
+
"learning_rate": 3.8333333333333334e-05,
|
480 |
+
"loss": 0.0483,
|
481 |
+
"step": 35000
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.73,
|
485 |
+
"learning_rate": 3.816666666666667e-05,
|
486 |
+
"loss": 0.0509,
|
487 |
+
"step": 35500
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"epoch": 4.8,
|
491 |
+
"learning_rate": 3.8e-05,
|
492 |
+
"loss": 0.0505,
|
493 |
+
"step": 36000
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 4.87,
|
497 |
+
"learning_rate": 3.7833333333333336e-05,
|
498 |
+
"loss": 0.0506,
|
499 |
+
"step": 36500
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 4.93,
|
503 |
+
"learning_rate": 3.766666666666667e-05,
|
504 |
+
"loss": 0.049,
|
505 |
+
"step": 37000
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"epoch": 5.0,
|
509 |
+
"learning_rate": 3.7500000000000003e-05,
|
510 |
+
"loss": 0.0485,
|
511 |
+
"step": 37500
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 5.0,
|
515 |
+
"eval_gen_len": 14.157,
|
516 |
+
"eval_loss": 0.0629316121339798,
|
517 |
+
"eval_rouge1": 39.0822,
|
518 |
+
"eval_rouge2": 27.4073,
|
519 |
+
"eval_rougeL": 38.1885,
|
520 |
+
"eval_rougeLsum": 38.8776,
|
521 |
+
"eval_runtime": 112.3853,
|
522 |
+
"eval_samples_per_second": 8.898,
|
523 |
+
"eval_steps_per_second": 1.112,
|
524 |
+
"step": 37500
|
525 |
+
}
|
526 |
+
],
|
527 |
+
"logging_steps": 500,
|
528 |
+
"max_steps": 150000,
|
529 |
+
"num_input_tokens_seen": 0,
|
530 |
+
"num_train_epochs": 20,
|
531 |
+
"save_steps": 500,
|
532 |
+
"total_flos": 1.601193167290368e+20,
|
533 |
+
"train_batch_size": 8,
|
534 |
+
"trial_name": null,
|
535 |
+
"trial_params": null
|
536 |
+
}
|
Model/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6dd77040949647fa4b081f2f6be19d1ed5b3019d92fd8ecb74d288af93cd6290
|
3 |
+
size 4411
|
Model/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Test-Images/0d930f0a-46f813a9-db3b137b-05142eef-eca3c5a7.jpg
ADDED
![]() |
Git LFS Details
|
Test-Images/6ff741e9-6ea01eef-1bf10153-d1b6beba-590b6620.jpg
ADDED
![]() |
Git LFS Details
|
Test-Images/93681764-ec39480e-0518b12c-199850c2-f15118ab.jpg
ADDED
![]() |
Git LFS Details
|
pytorch_grad_cam/Readme.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#### Grad-CAM visualization of any VisionEncoderDecoder model
|
2 |
+
|
3 |
+
# Step 1: Open /pytorch_grad_cam folder and make sure that in init.py all the CAM version is imported as the class name not the python file. For example
|
4 |
+
from pytorch_grad_cam.grad_cam import GradCAM
|
5 |
+
because when in the main python code (Grad_CAM_Visualization.py) we want to import every Class directly.
|
6 |
+
|
7 |
+
# Step2: Open the main Grad-CAM code: Grad_CAM_Visualization.py and edit the following function according to your model.
|
8 |
+
# "def reshape_transform(tensor, height=14, width=14):
|
9 |
+
result = tensor[:, 1:, :].reshape(tensor.size(0),
|
10 |
+
height, width, tensor.size(2))
|
11 |
+
result = result.transpose(2, 3).transpose(1, 2)
|
12 |
+
# return result"
|
13 |
+
here as the resized image tensor was [150,528] which should be equivalent to the reshaped transform of [1,14,14,768]
|
14 |
+
## The error message should be like this if any mismatch:
|
15 |
+
RuntimeError: shape '[1, 16, 16, 768]' is invalid for input of size 150528
|
16 |
+
|
17 |
+
# Step 3: Choose your desired model from (DeIT_Base16_Pretrained with ImageNeT, Customized VisionTransformer, Dino_Base16_Pretrained with ImageNeT, My customized DeiT-CXR model, My customized EfficientNet model, and ##VisionEncoderDecoder Model)
|
18 |
+
|
19 |
+
# Step 4: Open base_cam.py file and go to the "forward" function of Class BaseCAM.
|
20 |
+
Write extra line "outputs = outputs.pooler_output" for ##VisionEncoderDecoder Model as we need to take the tensor of pooler_output of the model configuration. Follow the comment line as well.
|
21 |
+
|
22 |
+
# Step 5: Then follow the comments in the Grad_CAM_Visualization.py:
|
23 |
+
use model.encoder instead of model for ## VisionEncoderDecoder Model
|
24 |
+
use different target_layers for different model
|
25 |
+
target_layers = [model.encoder.encoder.layer[-1].layernorm_before] for ## VisionEncoderDecoder Model
|
26 |
+
|
27 |
+
# Step 6: Change the image_path and output_path accordingly
|
28 |
+
|
29 |
+
# Step 7: Run python Grad_CAM_Visualization.py --use-cuda --image-path "directory/image_path" --method "any grad-cam method defined in the code"
|
pytorch_grad_cam/__init__.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pytorch_grad_cam.grad_cam import GradCAM
|
2 |
+
from pytorch_grad_cam.hirescam import HiResCAM
|
3 |
+
from pytorch_grad_cam.grad_cam_elementwise import GradCAMElementWise
|
4 |
+
from pytorch_grad_cam.ablation_layer import AblationLayer, AblationLayerVit, AblationLayerFasterRCNN
|
5 |
+
from pytorch_grad_cam.ablation_cam import AblationCAM
|
6 |
+
from pytorch_grad_cam.xgrad_cam import XGradCAM
|
7 |
+
from pytorch_grad_cam.grad_cam_plusplus import GradCAMPlusPlus
|
8 |
+
from pytorch_grad_cam.score_cam import ScoreCAM
|
9 |
+
from pytorch_grad_cam.layer_cam import LayerCAM
|
10 |
+
from pytorch_grad_cam.eigen_cam import EigenCAM
|
11 |
+
from pytorch_grad_cam.eigen_grad_cam import EigenGradCAM
|
12 |
+
from pytorch_grad_cam.random_cam import RandomCAM
|
13 |
+
from pytorch_grad_cam.fullgrad_cam import FullGrad
|
14 |
+
from pytorch_grad_cam.guided_backprop import GuidedBackpropReLUModel
|
15 |
+
from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients
|
16 |
+
from pytorch_grad_cam.feature_factorization.deep_feature_factorization import DeepFeatureFactorization, run_dff_on_image
|
17 |
+
import pytorch_grad_cam.utils.model_targets
|
18 |
+
import pytorch_grad_cam.utils.reshape_transforms
|
19 |
+
import pytorch_grad_cam.metrics.cam_mult_image
|
20 |
+
import pytorch_grad_cam.metrics.road
|
pytorch_grad_cam/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (1.57 kB). View file
|
|
pytorch_grad_cam/__pycache__/ablation_cam.cpython-39.pyc
ADDED
Binary file (3.7 kB). View file
|
|
pytorch_grad_cam/__pycache__/ablation_layer.cpython-39.pyc
ADDED
Binary file (5.25 kB). View file
|
|
pytorch_grad_cam/__pycache__/activations_and_gradients.cpython-39.pyc
ADDED
Binary file (1.9 kB). View file
|
|
pytorch_grad_cam/__pycache__/base_cam.cpython-39.pyc
ADDED
Binary file (5.86 kB). View file
|
|
pytorch_grad_cam/__pycache__/eigen_cam.cpython-39.pyc
ADDED
Binary file (948 Bytes). View file
|
|
pytorch_grad_cam/__pycache__/eigen_grad_cam.cpython-39.pyc
ADDED
Binary file (942 Bytes). View file
|
|
pytorch_grad_cam/__pycache__/fullgrad_cam.cpython-39.pyc
ADDED
Binary file (3.2 kB). View file
|
|
pytorch_grad_cam/__pycache__/grad_cam.cpython-39.pyc
ADDED
Binary file (889 Bytes). View file
|
|
pytorch_grad_cam/__pycache__/grad_cam_elementwise.cpython-39.pyc
ADDED
Binary file (1.11 kB). View file
|
|
pytorch_grad_cam/__pycache__/grad_cam_plusplus.cpython-39.pyc
ADDED
Binary file (1.14 kB). View file
|
|
pytorch_grad_cam/__pycache__/guided_backprop.cpython-39.pyc
ADDED
Binary file (3.43 kB). View file
|
|
pytorch_grad_cam/__pycache__/hirescam.cpython-39.pyc
ADDED
Binary file (1.14 kB). View file
|
|
pytorch_grad_cam/__pycache__/layer_cam.cpython-39.pyc
ADDED
Binary file (1.07 kB). View file
|
|
pytorch_grad_cam/__pycache__/random_cam.cpython-39.pyc
ADDED
Binary file (938 Bytes). View file
|
|
pytorch_grad_cam/__pycache__/score_cam.cpython-39.pyc
ADDED
Binary file (1.97 kB). View file
|
|
pytorch_grad_cam/__pycache__/xgrad_cam.cpython-39.pyc
ADDED
Binary file (1 kB). View file
|
|
pytorch_grad_cam/ablation_cam.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import tqdm
|
4 |
+
from typing import Callable, List
|
5 |
+
from pytorch_grad_cam.base_cam import BaseCAM
|
6 |
+
from pytorch_grad_cam.utils.find_layers import replace_layer_recursive
|
7 |
+
from pytorch_grad_cam.ablation_layer import AblationLayer
|
8 |
+
|
9 |
+
|
10 |
+
""" Implementation of AblationCAM
|
11 |
+
https://openaccess.thecvf.com/content_WACV_2020/papers/Desai_Ablation-CAM_Visual_Explanations_for_Deep_Convolutional_Network_via_Gradient-free_Localization_WACV_2020_paper.pdf
|
12 |
+
|
13 |
+
Ablate individual activations, and then measure the drop in the target score.
|
14 |
+
|
15 |
+
In the current implementation, the target layer activations is cached, so it won't be re-computed.
|
16 |
+
However layers before it, if any, will not be cached.
|
17 |
+
This means that if the target layer is a large block, for example model.featuers (in vgg), there will
|
18 |
+
be a large save in run time.
|
19 |
+
|
20 |
+
Since we have to go over many channels and ablate them, and every channel ablation requires a forward pass,
|
21 |
+
it would be nice if we could avoid doing that for channels that won't contribute anwyay, making it much faster.
|
22 |
+
The parameter ratio_channels_to_ablate controls how many channels should be ablated, using an experimental method
|
23 |
+
(to be improved). The default 1.0 value means that all channels will be ablated.
|
24 |
+
"""
|
25 |
+
|
26 |
+
|
27 |
+
class AblationCAM(BaseCAM):
|
28 |
+
def __init__(self,
|
29 |
+
model: torch.nn.Module,
|
30 |
+
target_layers: List[torch.nn.Module],
|
31 |
+
use_cuda: bool = False,
|
32 |
+
reshape_transform: Callable = None,
|
33 |
+
ablation_layer: torch.nn.Module = AblationLayer(),
|
34 |
+
batch_size: int = 32,
|
35 |
+
ratio_channels_to_ablate: float = 1.0) -> None:
|
36 |
+
|
37 |
+
super(AblationCAM, self).__init__(model,
|
38 |
+
target_layers,
|
39 |
+
use_cuda,
|
40 |
+
reshape_transform,
|
41 |
+
uses_gradients=False)
|
42 |
+
self.batch_size = batch_size
|
43 |
+
self.ablation_layer = ablation_layer
|
44 |
+
self.ratio_channels_to_ablate = ratio_channels_to_ablate
|
45 |
+
|
46 |
+
def save_activation(self, module, input, output) -> None:
|
47 |
+
""" Helper function to save the raw activations from the target layer """
|
48 |
+
self.activations = output
|
49 |
+
|
50 |
+
def assemble_ablation_scores(self,
|
51 |
+
new_scores: list,
|
52 |
+
original_score: float,
|
53 |
+
ablated_channels: np.ndarray,
|
54 |
+
number_of_channels: int) -> np.ndarray:
|
55 |
+
""" Take the value from the channels that were ablated,
|
56 |
+
and just set the original score for the channels that were skipped """
|
57 |
+
|
58 |
+
index = 0
|
59 |
+
result = []
|
60 |
+
sorted_indices = np.argsort(ablated_channels)
|
61 |
+
ablated_channels = ablated_channels[sorted_indices]
|
62 |
+
new_scores = np.float32(new_scores)[sorted_indices]
|
63 |
+
|
64 |
+
for i in range(number_of_channels):
|
65 |
+
if index < len(ablated_channels) and ablated_channels[index] == i:
|
66 |
+
weight = new_scores[index]
|
67 |
+
index = index + 1
|
68 |
+
else:
|
69 |
+
weight = original_score
|
70 |
+
result.append(weight)
|
71 |
+
|
72 |
+
return result
|
73 |
+
|
74 |
+
def get_cam_weights(self,
|
75 |
+
input_tensor: torch.Tensor,
|
76 |
+
target_layer: torch.nn.Module,
|
77 |
+
targets: List[Callable],
|
78 |
+
activations: torch.Tensor,
|
79 |
+
grads: torch.Tensor) -> np.ndarray:
|
80 |
+
|
81 |
+
# Do a forward pass, compute the target scores, and cache the
|
82 |
+
# activations
|
83 |
+
handle = target_layer.register_forward_hook(self.save_activation)
|
84 |
+
with torch.no_grad():
|
85 |
+
outputs = self.model(input_tensor)
|
86 |
+
handle.remove()
|
87 |
+
original_scores = np.float32(
|
88 |
+
[target(output).cpu().item() for target, output in zip(targets, outputs)])
|
89 |
+
|
90 |
+
# Replace the layer with the ablation layer.
|
91 |
+
# When we finish, we will replace it back, so the original model is
|
92 |
+
# unchanged.
|
93 |
+
ablation_layer = self.ablation_layer
|
94 |
+
replace_layer_recursive(self.model, target_layer, ablation_layer)
|
95 |
+
|
96 |
+
number_of_channels = activations.shape[1]
|
97 |
+
weights = []
|
98 |
+
# This is a "gradient free" method, so we don't need gradients here.
|
99 |
+
with torch.no_grad():
|
100 |
+
# Loop over each of the batch images and ablate activations for it.
|
101 |
+
for batch_index, (target, tensor) in enumerate(
|
102 |
+
zip(targets, input_tensor)):
|
103 |
+
new_scores = []
|
104 |
+
batch_tensor = tensor.repeat(self.batch_size, 1, 1, 1)
|
105 |
+
|
106 |
+
# Check which channels should be ablated. Normally this will be all channels,
|
107 |
+
# But we can also try to speed this up by using a low
|
108 |
+
# ratio_channels_to_ablate.
|
109 |
+
channels_to_ablate = ablation_layer.activations_to_be_ablated(
|
110 |
+
activations[batch_index, :], self.ratio_channels_to_ablate)
|
111 |
+
number_channels_to_ablate = len(channels_to_ablate)
|
112 |
+
|
113 |
+
for i in tqdm.tqdm(
|
114 |
+
range(
|
115 |
+
0,
|
116 |
+
number_channels_to_ablate,
|
117 |
+
self.batch_size)):
|
118 |
+
if i + self.batch_size > number_channels_to_ablate:
|
119 |
+
batch_tensor = batch_tensor[:(
|
120 |
+
number_channels_to_ablate - i)]
|
121 |
+
|
122 |
+
# Change the state of the ablation layer so it ablates the next channels.
|
123 |
+
# TBD: Move this into the ablation layer forward pass.
|
124 |
+
ablation_layer.set_next_batch(
|
125 |
+
input_batch_index=batch_index,
|
126 |
+
activations=self.activations,
|
127 |
+
num_channels_to_ablate=batch_tensor.size(0))
|
128 |
+
score = [target(o).cpu().item()
|
129 |
+
for o in self.model(batch_tensor)]
|
130 |
+
new_scores.extend(score)
|
131 |
+
ablation_layer.indices = ablation_layer.indices[batch_tensor.size(
|
132 |
+
0):]
|
133 |
+
|
134 |
+
new_scores = self.assemble_ablation_scores(
|
135 |
+
new_scores,
|
136 |
+
original_scores[batch_index],
|
137 |
+
channels_to_ablate,
|
138 |
+
number_of_channels)
|
139 |
+
weights.extend(new_scores)
|
140 |
+
|
141 |
+
weights = np.float32(weights)
|
142 |
+
weights = weights.reshape(activations.shape[:2])
|
143 |
+
original_scores = original_scores[:, None]
|
144 |
+
weights = (original_scores - weights) / original_scores
|
145 |
+
|
146 |
+
# Replace the model back to the original state
|
147 |
+
replace_layer_recursive(self.model, ablation_layer, target_layer)
|
148 |
+
return weights
|
pytorch_grad_cam/ablation_cam_multilayer.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import tqdm
|
5 |
+
from pytorch_grad_cam.base_cam import BaseCAM
|
6 |
+
|
7 |
+
|
8 |
+
class AblationLayer(torch.nn.Module):
|
9 |
+
def __init__(self, layer, reshape_transform, indices):
|
10 |
+
super(AblationLayer, self).__init__()
|
11 |
+
|
12 |
+
self.layer = layer
|
13 |
+
self.reshape_transform = reshape_transform
|
14 |
+
# The channels to zero out:
|
15 |
+
self.indices = indices
|
16 |
+
|
17 |
+
def forward(self, x):
|
18 |
+
self.__call__(x)
|
19 |
+
|
20 |
+
def __call__(self, x):
|
21 |
+
output = self.layer(x)
|
22 |
+
|
23 |
+
# Hack to work with ViT,
|
24 |
+
# Since the activation channels are last and not first like in CNNs
|
25 |
+
# Probably should remove it?
|
26 |
+
if self.reshape_transform is not None:
|
27 |
+
output = output.transpose(1, 2)
|
28 |
+
|
29 |
+
for i in range(output.size(0)):
|
30 |
+
|
31 |
+
# Commonly the minimum activation will be 0,
|
32 |
+
# And then it makes sense to zero it out.
|
33 |
+
# However depending on the architecture,
|
34 |
+
# If the values can be negative, we use very negative values
|
35 |
+
# to perform the ablation, deviating from the paper.
|
36 |
+
if torch.min(output) == 0:
|
37 |
+
output[i, self.indices[i], :] = 0
|
38 |
+
else:
|
39 |
+
ABLATION_VALUE = 1e5
|
40 |
+
output[i, self.indices[i], :] = torch.min(
|
41 |
+
output) - ABLATION_VALUE
|
42 |
+
|
43 |
+
if self.reshape_transform is not None:
|
44 |
+
output = output.transpose(2, 1)
|
45 |
+
|
46 |
+
return output
|
47 |
+
|
48 |
+
|
49 |
+
def replace_layer_recursive(model, old_layer, new_layer):
|
50 |
+
for name, layer in model._modules.items():
|
51 |
+
if layer == old_layer:
|
52 |
+
model._modules[name] = new_layer
|
53 |
+
return True
|
54 |
+
elif replace_layer_recursive(layer, old_layer, new_layer):
|
55 |
+
return True
|
56 |
+
return False
|
57 |
+
|
58 |
+
|
59 |
+
class AblationCAM(BaseCAM):
|
60 |
+
def __init__(self, model, target_layers, use_cuda=False,
|
61 |
+
reshape_transform=None):
|
62 |
+
super(AblationCAM, self).__init__(model, target_layers, use_cuda,
|
63 |
+
reshape_transform)
|
64 |
+
|
65 |
+
if len(target_layers) > 1:
|
66 |
+
print(
|
67 |
+
"Warning. You are usign Ablation CAM with more than 1 layers. "
|
68 |
+
"This is supported only if all layers have the same output shape")
|
69 |
+
|
70 |
+
def set_ablation_layers(self):
|
71 |
+
self.ablation_layers = []
|
72 |
+
for target_layer in self.target_layers:
|
73 |
+
ablation_layer = AblationLayer(target_layer,
|
74 |
+
self.reshape_transform, indices=[])
|
75 |
+
self.ablation_layers.append(ablation_layer)
|
76 |
+
replace_layer_recursive(self.model, target_layer, ablation_layer)
|
77 |
+
|
78 |
+
def unset_ablation_layers(self):
|
79 |
+
# replace the model back to the original state
|
80 |
+
for ablation_layer, target_layer in zip(
|
81 |
+
self.ablation_layers, self.target_layers):
|
82 |
+
replace_layer_recursive(self.model, ablation_layer, target_layer)
|
83 |
+
|
84 |
+
def set_ablation_layer_batch_indices(self, indices):
|
85 |
+
for ablation_layer in self.ablation_layers:
|
86 |
+
ablation_layer.indices = indices
|
87 |
+
|
88 |
+
def trim_ablation_layer_batch_indices(self, keep):
|
89 |
+
for ablation_layer in self.ablation_layers:
|
90 |
+
ablation_layer.indices = ablation_layer.indices[:keep]
|
91 |
+
|
92 |
+
def get_cam_weights(self,
|
93 |
+
input_tensor,
|
94 |
+
target_category,
|
95 |
+
activations,
|
96 |
+
grads):
|
97 |
+
with torch.no_grad():
|
98 |
+
outputs = self.model(input_tensor).cpu().numpy()
|
99 |
+
original_scores = []
|
100 |
+
for i in range(input_tensor.size(0)):
|
101 |
+
original_scores.append(outputs[i, target_category[i]])
|
102 |
+
original_scores = np.float32(original_scores)
|
103 |
+
|
104 |
+
self.set_ablation_layers()
|
105 |
+
|
106 |
+
if hasattr(self, "batch_size"):
|
107 |
+
BATCH_SIZE = self.batch_size
|
108 |
+
else:
|
109 |
+
BATCH_SIZE = 32
|
110 |
+
|
111 |
+
number_of_channels = activations.shape[1]
|
112 |
+
weights = []
|
113 |
+
|
114 |
+
with torch.no_grad():
|
115 |
+
# Iterate over the input batch
|
116 |
+
for tensor, category in zip(input_tensor, target_category):
|
117 |
+
batch_tensor = tensor.repeat(BATCH_SIZE, 1, 1, 1)
|
118 |
+
for i in tqdm.tqdm(range(0, number_of_channels, BATCH_SIZE)):
|
119 |
+
self.set_ablation_layer_batch_indices(
|
120 |
+
list(range(i, i + BATCH_SIZE)))
|
121 |
+
|
122 |
+
if i + BATCH_SIZE > number_of_channels:
|
123 |
+
keep = number_of_channels - i
|
124 |
+
batch_tensor = batch_tensor[:keep]
|
125 |
+
self.trim_ablation_layer_batch_indices(self, keep)
|
126 |
+
score = self.model(batch_tensor)[:, category].cpu().numpy()
|
127 |
+
weights.extend(score)
|
128 |
+
|
129 |
+
weights = np.float32(weights)
|
130 |
+
weights = weights.reshape(activations.shape[:2])
|
131 |
+
original_scores = original_scores[:, None]
|
132 |
+
weights = (original_scores - weights) / original_scores
|
133 |
+
|
134 |
+
# replace the model back to the original state
|
135 |
+
self.unset_ablation_layers()
|
136 |
+
return weights
|
pytorch_grad_cam/ablation_layer.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from collections import OrderedDict
|
3 |
+
import numpy as np
|
4 |
+
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
|
5 |
+
|
6 |
+
|
7 |
+
class AblationLayer(torch.nn.Module):
|
8 |
+
def __init__(self):
|
9 |
+
super(AblationLayer, self).__init__()
|
10 |
+
|
11 |
+
def objectiveness_mask_from_svd(self, activations, threshold=0.01):
|
12 |
+
""" Experimental method to get a binary mask to compare if the activation is worth ablating.
|
13 |
+
The idea is to apply the EigenCAM method by doing PCA on the activations.
|
14 |
+
Then we create a binary mask by comparing to a low threshold.
|
15 |
+
Areas that are masked out, are probably not interesting anyway.
|
16 |
+
"""
|
17 |
+
|
18 |
+
projection = get_2d_projection(activations[None, :])[0, :]
|
19 |
+
projection = np.abs(projection)
|
20 |
+
projection = projection - projection.min()
|
21 |
+
projection = projection / projection.max()
|
22 |
+
projection = projection > threshold
|
23 |
+
return projection
|
24 |
+
|
25 |
+
def activations_to_be_ablated(
|
26 |
+
self,
|
27 |
+
activations,
|
28 |
+
ratio_channels_to_ablate=1.0):
|
29 |
+
""" Experimental method to get a binary mask to compare if the activation is worth ablating.
|
30 |
+
Create a binary CAM mask with objectiveness_mask_from_svd.
|
31 |
+
Score each Activation channel, by seeing how much of its values are inside the mask.
|
32 |
+
Then keep the top channels.
|
33 |
+
|
34 |
+
"""
|
35 |
+
if ratio_channels_to_ablate == 1.0:
|
36 |
+
self.indices = np.int32(range(activations.shape[0]))
|
37 |
+
return self.indices
|
38 |
+
|
39 |
+
projection = self.objectiveness_mask_from_svd(activations)
|
40 |
+
|
41 |
+
scores = []
|
42 |
+
for channel in activations:
|
43 |
+
normalized = np.abs(channel)
|
44 |
+
normalized = normalized - normalized.min()
|
45 |
+
normalized = normalized / np.max(normalized)
|
46 |
+
score = (projection * normalized).sum() / normalized.sum()
|
47 |
+
scores.append(score)
|
48 |
+
scores = np.float32(scores)
|
49 |
+
|
50 |
+
indices = list(np.argsort(scores))
|
51 |
+
high_score_indices = indices[::-
|
52 |
+
1][: int(len(indices) *
|
53 |
+
ratio_channels_to_ablate)]
|
54 |
+
low_score_indices = indices[: int(
|
55 |
+
len(indices) * ratio_channels_to_ablate)]
|
56 |
+
self.indices = np.int32(high_score_indices + low_score_indices)
|
57 |
+
return self.indices
|
58 |
+
|
59 |
+
def set_next_batch(
|
60 |
+
self,
|
61 |
+
input_batch_index,
|
62 |
+
activations,
|
63 |
+
num_channels_to_ablate):
|
64 |
+
""" This creates the next batch of activations from the layer.
|
65 |
+
Just take corresponding batch member from activations, and repeat it num_channels_to_ablate times.
|
66 |
+
"""
|
67 |
+
self.activations = activations[input_batch_index, :, :, :].clone(
|
68 |
+
).unsqueeze(0).repeat(num_channels_to_ablate, 1, 1, 1)
|
69 |
+
|
70 |
+
def __call__(self, x):
|
71 |
+
output = self.activations
|
72 |
+
for i in range(output.size(0)):
|
73 |
+
# Commonly the minimum activation will be 0,
|
74 |
+
# And then it makes sense to zero it out.
|
75 |
+
# However depending on the architecture,
|
76 |
+
# If the values can be negative, we use very negative values
|
77 |
+
# to perform the ablation, deviating from the paper.
|
78 |
+
if torch.min(output) == 0:
|
79 |
+
output[i, self.indices[i], :] = 0
|
80 |
+
else:
|
81 |
+
ABLATION_VALUE = 1e7
|
82 |
+
output[i, self.indices[i], :] = torch.min(
|
83 |
+
output) - ABLATION_VALUE
|
84 |
+
|
85 |
+
return output
|
86 |
+
|
87 |
+
|
88 |
+
class AblationLayerVit(AblationLayer):
|
89 |
+
def __init__(self):
|
90 |
+
super(AblationLayerVit, self).__init__()
|
91 |
+
|
92 |
+
def __call__(self, x):
|
93 |
+
output = self.activations
|
94 |
+
output = output.transpose(1, len(output.shape) - 1)
|
95 |
+
for i in range(output.size(0)):
|
96 |
+
|
97 |
+
# Commonly the minimum activation will be 0,
|
98 |
+
# And then it makes sense to zero it out.
|
99 |
+
# However depending on the architecture,
|
100 |
+
# If the values can be negative, we use very negative values
|
101 |
+
# to perform the ablation, deviating from the paper.
|
102 |
+
if torch.min(output) == 0:
|
103 |
+
output[i, self.indices[i], :] = 0
|
104 |
+
else:
|
105 |
+
ABLATION_VALUE = 1e7
|
106 |
+
output[i, self.indices[i], :] = torch.min(
|
107 |
+
output) - ABLATION_VALUE
|
108 |
+
|
109 |
+
output = output.transpose(len(output.shape) - 1, 1)
|
110 |
+
|
111 |
+
return output
|
112 |
+
|
113 |
+
def set_next_batch(
|
114 |
+
self,
|
115 |
+
input_batch_index,
|
116 |
+
activations,
|
117 |
+
num_channels_to_ablate):
|
118 |
+
""" This creates the next batch of activations from the layer.
|
119 |
+
Just take corresponding batch member from activations, and repeat it num_channels_to_ablate times.
|
120 |
+
"""
|
121 |
+
repeat_params = [num_channels_to_ablate] + \
|
122 |
+
len(activations.shape[:-1]) * [1]
|
123 |
+
self.activations = activations[input_batch_index, :, :].clone(
|
124 |
+
).unsqueeze(0).repeat(*repeat_params)
|
125 |
+
|
126 |
+
|
127 |
+
class AblationLayerFasterRCNN(AblationLayer):
|
128 |
+
def __init__(self):
|
129 |
+
super(AblationLayerFasterRCNN, self).__init__()
|
130 |
+
|
131 |
+
def set_next_batch(
|
132 |
+
self,
|
133 |
+
input_batch_index,
|
134 |
+
activations,
|
135 |
+
num_channels_to_ablate):
|
136 |
+
""" Extract the next batch member from activations,
|
137 |
+
and repeat it num_channels_to_ablate times.
|
138 |
+
"""
|
139 |
+
self.activations = OrderedDict()
|
140 |
+
for key, value in activations.items():
|
141 |
+
fpn_activation = value[input_batch_index,
|
142 |
+
:, :, :].clone().unsqueeze(0)
|
143 |
+
self.activations[key] = fpn_activation.repeat(
|
144 |
+
num_channels_to_ablate, 1, 1, 1)
|
145 |
+
|
146 |
+
def __call__(self, x):
|
147 |
+
result = self.activations
|
148 |
+
layers = {0: '0', 1: '1', 2: '2', 3: '3', 4: 'pool'}
|
149 |
+
num_channels_to_ablate = result['pool'].size(0)
|
150 |
+
for i in range(num_channels_to_ablate):
|
151 |
+
pyramid_layer = int(self.indices[i] / 256)
|
152 |
+
index_in_pyramid_layer = int(self.indices[i] % 256)
|
153 |
+
result[layers[pyramid_layer]][i,
|
154 |
+
index_in_pyramid_layer, :, :] = -1000
|
155 |
+
return result
|
pytorch_grad_cam/activations_and_gradients.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class ActivationsAndGradients:
|
2 |
+
""" Class for extracting activations and
|
3 |
+
registering gradients from targetted intermediate layers """
|
4 |
+
|
5 |
+
def __init__(self, model, target_layers, reshape_transform):
|
6 |
+
self.model = model
|
7 |
+
self.gradients = []
|
8 |
+
self.activations = []
|
9 |
+
self.reshape_transform = reshape_transform
|
10 |
+
self.handles = []
|
11 |
+
for target_layer in target_layers:
|
12 |
+
self.handles.append(
|
13 |
+
target_layer.register_forward_hook(self.save_activation))
|
14 |
+
# Because of https://github.com/pytorch/pytorch/issues/61519,
|
15 |
+
# we don't use backward hook to record gradients.
|
16 |
+
self.handles.append(
|
17 |
+
target_layer.register_forward_hook(self.save_gradient))
|
18 |
+
|
19 |
+
def save_activation(self, module, input, output):
|
20 |
+
activation = output
|
21 |
+
|
22 |
+
if self.reshape_transform is not None:
|
23 |
+
activation = self.reshape_transform(activation)
|
24 |
+
self.activations.append(activation.cpu().detach())
|
25 |
+
|
26 |
+
def save_gradient(self, module, input, output):
|
27 |
+
if not hasattr(output, "requires_grad") or not output.requires_grad:
|
28 |
+
# You can only register hooks on tensor requires grad.
|
29 |
+
return
|
30 |
+
|
31 |
+
# Gradients are computed in reverse order
|
32 |
+
def _store_grad(grad):
|
33 |
+
if self.reshape_transform is not None:
|
34 |
+
grad = self.reshape_transform(grad)
|
35 |
+
self.gradients = [grad.cpu().detach()] + self.gradients
|
36 |
+
|
37 |
+
output.register_hook(_store_grad)
|
38 |
+
|
39 |
+
def __call__(self, x):
|
40 |
+
self.gradients = []
|
41 |
+
self.activations = []
|
42 |
+
return self.model(x)
|
43 |
+
|
44 |
+
def release(self):
|
45 |
+
for handle in self.handles:
|
46 |
+
handle.remove()
|
pytorch_grad_cam/base_cam.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import ttach as tta
|
4 |
+
from typing import Callable, List, Tuple
|
5 |
+
from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients
|
6 |
+
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
|
7 |
+
from pytorch_grad_cam.utils.image import scale_cam_image
|
8 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
9 |
+
|
10 |
+
|
11 |
+
class BaseCAM:
|
12 |
+
def __init__(self,
|
13 |
+
model: torch.nn.Module,
|
14 |
+
target_layers: List[torch.nn.Module],
|
15 |
+
use_cuda: bool = False,
|
16 |
+
reshape_transform: Callable = None,
|
17 |
+
compute_input_gradient: bool = False,
|
18 |
+
uses_gradients: bool = True) -> None:
|
19 |
+
self.model = model.eval()
|
20 |
+
self.target_layers = target_layers
|
21 |
+
self.cuda = use_cuda
|
22 |
+
if self.cuda:
|
23 |
+
self.model = model.cuda()
|
24 |
+
self.reshape_transform = reshape_transform
|
25 |
+
self.compute_input_gradient = compute_input_gradient
|
26 |
+
self.uses_gradients = uses_gradients
|
27 |
+
self.activations_and_grads = ActivationsAndGradients(
|
28 |
+
self.model, target_layers, reshape_transform)
|
29 |
+
|
30 |
+
""" Get a vector of weights for every channel in the target layer.
|
31 |
+
Methods that return weights channels,
|
32 |
+
will typically need to only implement this function. """
|
33 |
+
|
34 |
+
def get_cam_weights(self,
|
35 |
+
input_tensor: torch.Tensor,
|
36 |
+
target_layers: List[torch.nn.Module],
|
37 |
+
targets: List[torch.nn.Module],
|
38 |
+
activations: torch.Tensor,
|
39 |
+
grads: torch.Tensor) -> np.ndarray:
|
40 |
+
raise Exception("Not Implemented")
|
41 |
+
|
42 |
+
def get_cam_image(self,
|
43 |
+
input_tensor: torch.Tensor,
|
44 |
+
target_layer: torch.nn.Module,
|
45 |
+
targets: List[torch.nn.Module],
|
46 |
+
activations: torch.Tensor,
|
47 |
+
grads: torch.Tensor,
|
48 |
+
eigen_smooth: bool = False) -> np.ndarray:
|
49 |
+
|
50 |
+
weights = self.get_cam_weights(input_tensor,
|
51 |
+
target_layer,
|
52 |
+
targets,
|
53 |
+
activations,
|
54 |
+
grads)
|
55 |
+
weighted_activations = weights[:, :, None, None] * activations
|
56 |
+
if eigen_smooth:
|
57 |
+
cam = get_2d_projection(weighted_activations)
|
58 |
+
else:
|
59 |
+
cam = weighted_activations.sum(axis=1)
|
60 |
+
return cam
|
61 |
+
|
62 |
+
def forward(self,
|
63 |
+
input_tensor: torch.Tensor,
|
64 |
+
targets: List[torch.nn.Module],
|
65 |
+
eigen_smooth: bool = False) -> np.ndarray:
|
66 |
+
|
67 |
+
if self.cuda:
|
68 |
+
input_tensor = input_tensor.cuda()
|
69 |
+
|
70 |
+
if self.compute_input_gradient:
|
71 |
+
input_tensor = torch.autograd.Variable(input_tensor,
|
72 |
+
requires_grad=True)
|
73 |
+
|
74 |
+
outputs = self.activations_and_grads(input_tensor)
|
75 |
+
outputs = outputs.pooler_output # Only for ViT-GPT2 or any other VisionEncoderDecoder model
|
76 |
+
print(outputs)
|
77 |
+
if targets is None:
|
78 |
+
target_categories = np.argmax(outputs.cpu().data.numpy(), axis=-1) #np.argmax(outputs.cpu().data.numpy(), axis=-1)
|
79 |
+
targets = [ClassifierOutputTarget(
|
80 |
+
category) for category in target_categories]
|
81 |
+
|
82 |
+
if self.uses_gradients:
|
83 |
+
self.model.zero_grad()
|
84 |
+
loss = sum([target(output)
|
85 |
+
for target, output in zip(targets, outputs)])
|
86 |
+
loss.backward(retain_graph=True)
|
87 |
+
|
88 |
+
# In most of the saliency attribution papers, the saliency is
|
89 |
+
# computed with a single target layer.
|
90 |
+
# Commonly it is the last convolutional layer.
|
91 |
+
# Here we support passing a list with multiple target layers.
|
92 |
+
# It will compute the saliency image for every image,
|
93 |
+
# and then aggregate them (with a default mean aggregation).
|
94 |
+
# This gives you more flexibility in case you just want to
|
95 |
+
# use all conv layers for example, all Batchnorm layers,
|
96 |
+
# or something else.
|
97 |
+
cam_per_layer = self.compute_cam_per_layer(input_tensor,
|
98 |
+
targets,
|
99 |
+
eigen_smooth)
|
100 |
+
return self.aggregate_multi_layers(cam_per_layer)
|
101 |
+
|
102 |
+
def get_target_width_height(self,
|
103 |
+
input_tensor: torch.Tensor) -> Tuple[int, int]:
|
104 |
+
width, height = input_tensor.size(-1), input_tensor.size(-2)
|
105 |
+
return width, height
|
106 |
+
|
107 |
+
def compute_cam_per_layer(
|
108 |
+
self,
|
109 |
+
input_tensor: torch.Tensor,
|
110 |
+
targets: List[torch.nn.Module],
|
111 |
+
eigen_smooth: bool) -> np.ndarray:
|
112 |
+
activations_list = [a.cpu().data.numpy()
|
113 |
+
for a in self.activations_and_grads.activations]
|
114 |
+
grads_list = [g.cpu().data.numpy()
|
115 |
+
for g in self.activations_and_grads.gradients]
|
116 |
+
target_size = self.get_target_width_height(input_tensor)
|
117 |
+
|
118 |
+
cam_per_target_layer = []
|
119 |
+
# Loop over the saliency image from every layer
|
120 |
+
for i in range(len(self.target_layers)):
|
121 |
+
target_layer = self.target_layers[i]
|
122 |
+
layer_activations = None
|
123 |
+
layer_grads = None
|
124 |
+
if i < len(activations_list):
|
125 |
+
layer_activations = activations_list[i]
|
126 |
+
if i < len(grads_list):
|
127 |
+
layer_grads = grads_list[i]
|
128 |
+
|
129 |
+
cam = self.get_cam_image(input_tensor,
|
130 |
+
target_layer,
|
131 |
+
targets,
|
132 |
+
layer_activations,
|
133 |
+
layer_grads,
|
134 |
+
eigen_smooth)
|
135 |
+
cam = np.maximum(cam, 0)
|
136 |
+
scaled = scale_cam_image(cam, target_size)
|
137 |
+
cam_per_target_layer.append(scaled[:, None, :])
|
138 |
+
|
139 |
+
return cam_per_target_layer
|
140 |
+
|
141 |
+
def aggregate_multi_layers(
|
142 |
+
self,
|
143 |
+
cam_per_target_layer: np.ndarray) -> np.ndarray:
|
144 |
+
cam_per_target_layer = np.concatenate(cam_per_target_layer, axis=1)
|
145 |
+
cam_per_target_layer = np.maximum(cam_per_target_layer, 0)
|
146 |
+
result = np.mean(cam_per_target_layer, axis=1)
|
147 |
+
return scale_cam_image(result)
|
148 |
+
|
149 |
+
def forward_augmentation_smoothing(self,
|
150 |
+
input_tensor: torch.Tensor,
|
151 |
+
targets: List[torch.nn.Module],
|
152 |
+
eigen_smooth: bool = False) -> np.ndarray:
|
153 |
+
transforms = tta.Compose(
|
154 |
+
[
|
155 |
+
tta.HorizontalFlip(),
|
156 |
+
tta.Multiply(factors=[0.9, 1, 1.1]),
|
157 |
+
]
|
158 |
+
)
|
159 |
+
cams = []
|
160 |
+
for transform in transforms:
|
161 |
+
augmented_tensor = transform.augment_image(input_tensor)
|
162 |
+
cam = self.forward(augmented_tensor,
|
163 |
+
targets,
|
164 |
+
eigen_smooth)
|
165 |
+
|
166 |
+
# The ttach library expects a tensor of size BxCxHxW
|
167 |
+
cam = cam[:, None, :, :]
|
168 |
+
cam = torch.from_numpy(cam)
|
169 |
+
cam = transform.deaugment_mask(cam)
|
170 |
+
|
171 |
+
# Back to numpy float32, HxW
|
172 |
+
cam = cam.numpy()
|
173 |
+
cam = cam[:, 0, :, :]
|
174 |
+
cams.append(cam)
|
175 |
+
|
176 |
+
cam = np.mean(np.float32(cams), axis=0)
|
177 |
+
return cam
|
178 |
+
|
179 |
+
def __call__(self,
|
180 |
+
input_tensor: torch.Tensor,
|
181 |
+
targets: List[torch.nn.Module] = None,
|
182 |
+
aug_smooth: bool = False,
|
183 |
+
eigen_smooth: bool = False) -> np.ndarray:
|
184 |
+
|
185 |
+
# Smooth the CAM result with test time augmentation
|
186 |
+
if aug_smooth is True:
|
187 |
+
return self.forward_augmentation_smoothing(
|
188 |
+
input_tensor, targets, eigen_smooth)
|
189 |
+
|
190 |
+
return self.forward(input_tensor,
|
191 |
+
targets, eigen_smooth)
|
192 |
+
|
193 |
+
def __del__(self):
|
194 |
+
self.activations_and_grads.release()
|
195 |
+
|
196 |
+
def __enter__(self):
|
197 |
+
return self
|
198 |
+
|
199 |
+
def __exit__(self, exc_type, exc_value, exc_tb):
|
200 |
+
self.activations_and_grads.release()
|
201 |
+
if isinstance(exc_value, IndexError):
|
202 |
+
# Handle IndexError here...
|
203 |
+
print(
|
204 |
+
f"An exception occurred in CAM with block: {exc_type}. Message: {exc_value}")
|
205 |
+
return True
|
pytorch_grad_cam/cam_mult_image.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from typing import List, Callable
|
4 |
+
from pytorch_grad_cam.metrics.perturbation_confidence import PerturbationConfidenceMetric
|
5 |
+
|
6 |
+
|
7 |
+
def multiply_tensor_with_cam(input_tensor: torch.Tensor,
|
8 |
+
cam: torch.Tensor):
|
9 |
+
""" Multiply an input tensor (after normalization)
|
10 |
+
with a pixel attribution map
|
11 |
+
"""
|
12 |
+
return input_tensor * cam
|
13 |
+
|
14 |
+
|
15 |
+
class CamMultImageConfidenceChange(PerturbationConfidenceMetric):
|
16 |
+
def __init__(self):
|
17 |
+
super(CamMultImageConfidenceChange,
|
18 |
+
self).__init__(multiply_tensor_with_cam)
|
19 |
+
|
20 |
+
|
21 |
+
class DropInConfidence(CamMultImageConfidenceChange):
|
22 |
+
def __init__(self):
|
23 |
+
super(DropInConfidence, self).__init__()
|
24 |
+
|
25 |
+
def __call__(self, *args, **kwargs):
|
26 |
+
scores = super(DropInConfidence, self).__call__(*args, **kwargs)
|
27 |
+
scores = -scores
|
28 |
+
return np.maximum(scores, 0)
|
29 |
+
|
30 |
+
|
31 |
+
class IncreaseInConfidence(CamMultImageConfidenceChange):
|
32 |
+
def __init__(self):
|
33 |
+
super(IncreaseInConfidence, self).__init__()
|
34 |
+
|
35 |
+
def __call__(self, *args, **kwargs):
|
36 |
+
scores = super(IncreaseInConfidence, self).__call__(*args, **kwargs)
|
37 |
+
return np.float32(scores > 0)
|
pytorch_grad_cam/eigen_cam.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pytorch_grad_cam.base_cam import BaseCAM
|
2 |
+
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
|
3 |
+
|
4 |
+
# https://arxiv.org/abs/2008.00299
|
5 |
+
|
6 |
+
|
7 |
+
class EigenCAM(BaseCAM):
|
8 |
+
def __init__(self, model, target_layers, use_cuda=False,
|
9 |
+
reshape_transform=None):
|
10 |
+
super(EigenCAM, self).__init__(model,
|
11 |
+
target_layers,
|
12 |
+
use_cuda,
|
13 |
+
reshape_transform,
|
14 |
+
uses_gradients=False)
|
15 |
+
|
16 |
+
def get_cam_image(self,
|
17 |
+
input_tensor,
|
18 |
+
target_layer,
|
19 |
+
target_category,
|
20 |
+
activations,
|
21 |
+
grads,
|
22 |
+
eigen_smooth):
|
23 |
+
return get_2d_projection(activations)
|
pytorch_grad_cam/eigen_grad_cam.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pytorch_grad_cam.base_cam import BaseCAM
|
2 |
+
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
|
3 |
+
|
4 |
+
# Like Eigen CAM: https://arxiv.org/abs/2008.00299
|
5 |
+
# But multiply the activations x gradients
|
6 |
+
|
7 |
+
|
8 |
+
class EigenGradCAM(BaseCAM):
|
9 |
+
def __init__(self, model, target_layers, use_cuda=False,
|
10 |
+
reshape_transform=None):
|
11 |
+
super(EigenGradCAM, self).__init__(model, target_layers, use_cuda,
|
12 |
+
reshape_transform)
|
13 |
+
|
14 |
+
def get_cam_image(self,
|
15 |
+
input_tensor,
|
16 |
+
target_layer,
|
17 |
+
target_category,
|
18 |
+
activations,
|
19 |
+
grads,
|
20 |
+
eigen_smooth):
|
21 |
+
return get_2d_projection(grads * activations)
|
pytorch_grad_cam/feature_factorization/__init__.py
ADDED
File without changes
|
pytorch_grad_cam/feature_factorization/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (180 Bytes). View file
|
|
pytorch_grad_cam/feature_factorization/__pycache__/deep_feature_factorization.cpython-39.pyc
ADDED
Binary file (4.75 kB). View file
|
|