Update Chest_Xray_Report_Generator-Web-V2.py
Browse files- Chest_Xray_Report_Generator-Web-V2.py +577 -537
Chest_Xray_Report_Generator-Web-V2.py
CHANGED
@@ -1,537 +1,577 @@
|
|
1 |
-
import os
|
2 |
-
import transformers
|
3 |
-
from transformers import pipeline
|
4 |
-
|
5 |
-
### Gradio
|
6 |
-
import gradio as gr
|
7 |
-
from gradio.themes.base import Base
|
8 |
-
from gradio.themes.utils import colors, fonts, sizes
|
9 |
-
from typing import Union, Iterable
|
10 |
-
import time
|
11 |
-
#####
|
12 |
-
|
13 |
-
|
14 |
-
import cv2
|
15 |
-
import numpy as np
|
16 |
-
import pydicom
|
17 |
-
import re
|
18 |
-
|
19 |
-
##### Libraries For Grad-Cam-View
|
20 |
-
import os
|
21 |
-
import cv2
|
22 |
-
import numpy as np
|
23 |
-
import torch
|
24 |
-
from functools import partial
|
25 |
-
from torchvision import transforms
|
26 |
-
from pytorch_grad_cam import GradCAM, ScoreCAM, GradCAMPlusPlus, AblationCAM, XGradCAM, EigenCAM, EigenGradCAM, LayerCAM, FullGrad
|
27 |
-
from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image
|
28 |
-
from pytorch_grad_cam.ablation_layer import AblationLayerVit
|
29 |
-
from transformers import VisionEncoderDecoderModel
|
30 |
-
|
31 |
-
|
32 |
-
from transformers import AutoTokenizer
|
33 |
-
import transformers
|
34 |
-
import torch
|
35 |
-
|
36 |
-
from openai import OpenAI
|
37 |
-
client = OpenAI()
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
)
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
.
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
#
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
font-size:
|
360 |
-
}
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
)
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
)
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import transformers
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
### Gradio
|
6 |
+
import gradio as gr
|
7 |
+
from gradio.themes.base import Base
|
8 |
+
from gradio.themes.utils import colors, fonts, sizes
|
9 |
+
from typing import Union, Iterable
|
10 |
+
import time
|
11 |
+
#####
|
12 |
+
|
13 |
+
|
14 |
+
import cv2
|
15 |
+
import numpy as np
|
16 |
+
import pydicom
|
17 |
+
import re
|
18 |
+
|
19 |
+
##### Libraries For Grad-Cam-View
|
20 |
+
import os
|
21 |
+
import cv2
|
22 |
+
import numpy as np
|
23 |
+
import torch
|
24 |
+
from functools import partial
|
25 |
+
from torchvision import transforms
|
26 |
+
from pytorch_grad_cam import GradCAM, ScoreCAM, GradCAMPlusPlus, AblationCAM, XGradCAM, EigenCAM, EigenGradCAM, LayerCAM, FullGrad
|
27 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image
|
28 |
+
from pytorch_grad_cam.ablation_layer import AblationLayerVit
|
29 |
+
from transformers import VisionEncoderDecoderModel
|
30 |
+
|
31 |
+
|
32 |
+
from transformers import AutoTokenizer
|
33 |
+
import transformers
|
34 |
+
import torch
|
35 |
+
|
36 |
+
from openai import OpenAI
|
37 |
+
client = OpenAI()
|
38 |
+
|
39 |
+
# === SET THESE ===
|
40 |
+
# REPO_ID = "ChayanDeb/AURA-CXR_Feedback"
|
41 |
+
# LOCAL_DIR = "feedback_repo"
|
42 |
+
# FEEDBACK_FILE = os.path.join(LOCAL_DIR, "feedback.txt")
|
43 |
+
|
44 |
+
# # Only once at app start
|
45 |
+
# def setup_repo():
|
46 |
+
# token = os.getenv("HF_TOKEN")
|
47 |
+
# if not token:
|
48 |
+
# raise ValueError("HF_TOKEN not set in environment variables")
|
49 |
+
|
50 |
+
# login(token=token)
|
51 |
+
|
52 |
+
# if not os.path.exists(LOCAL_DIR):
|
53 |
+
# print("Cloning feedback repo...")
|
54 |
+
# Repository(local_dir=LOCAL_DIR, clone_from=REPO_ID, use_auth_token=token)
|
55 |
+
# else:
|
56 |
+
# print("Repo already exists locally.")
|
57 |
+
|
58 |
+
# setup_repo()
|
59 |
+
|
60 |
+
# # Call this on user feedback submission
|
61 |
+
# def save_feedback(feedback):
|
62 |
+
# try:
|
63 |
+
# now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
64 |
+
# entry = f"{now} | {feedback.strip()}\n"
|
65 |
+
|
66 |
+
# # Append to local file
|
67 |
+
# with open(FEEDBACK_FILE, "a") as f:
|
68 |
+
# f.write(entry)
|
69 |
+
|
70 |
+
# # Push to hub
|
71 |
+
# repo = Repository(local_dir=LOCAL_DIR, clone_from=REPO_ID, use_auth_token=os.getenv("HF_TOKEN"))
|
72 |
+
# repo.push_to_hub(commit_message="Add new feedback")
|
73 |
+
|
74 |
+
# return "Feedback submitted!"
|
75 |
+
# except Exception as e:
|
76 |
+
# print("Error:", e)
|
77 |
+
# return "Failed to submit feedback."
|
78 |
+
|
79 |
+
import spaces # Import the spaces module for ZeroGPU
|
80 |
+
|
81 |
+
|
82 |
+
@spaces.GPU
|
83 |
+
def generate_gradcam(image_path, model_path, output_path, method='gradcam', use_cuda=True, aug_smooth=False, eigen_smooth=False):
|
84 |
+
methods = {
|
85 |
+
"gradcam": GradCAM,
|
86 |
+
"scorecam": ScoreCAM,
|
87 |
+
"gradcam++": GradCAMPlusPlus,
|
88 |
+
"ablationcam": AblationCAM,
|
89 |
+
"xgradcam": XGradCAM,
|
90 |
+
"eigencam": EigenCAM,
|
91 |
+
"eigengradcam": EigenGradCAM,
|
92 |
+
"layercam": LayerCAM,
|
93 |
+
"fullgrad": FullGrad
|
94 |
+
}
|
95 |
+
|
96 |
+
if method not in methods:
|
97 |
+
raise ValueError(f"Method should be one of {list(methods.keys())}")
|
98 |
+
|
99 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_path)
|
100 |
+
model.encoder.eval()
|
101 |
+
|
102 |
+
if use_cuda and torch.cuda.is_available():
|
103 |
+
model.encoder = model.encoder.cuda()
|
104 |
+
else:
|
105 |
+
use_cuda = False
|
106 |
+
|
107 |
+
#target_layers = [model.blocks[-1].norm1] ## For ViT model
|
108 |
+
#target_layers = model.blocks[-1].norm1 ## For EfficientNet-B7 model
|
109 |
+
#target_layers = [model.encoder.encoder.layer[-1].layernorm_before] ## For ViT-based VisionEncoderDecoder model
|
110 |
+
target_layers = [model.encoder.encoder.layers[-1].blocks[-0].layernorm_after, model.encoder.encoder.layers[-1].blocks[-1].layernorm_after] ## [model.encoder.encoder.layers[-1].blocks[-1].layernorm_before, model.encoder.encoder.layers[-1].blocks[0].layernorm_before] For Swin-based VisionEncoderDecoder model
|
111 |
+
|
112 |
+
|
113 |
+
if method == "ablationcam":
|
114 |
+
cam = methods[method](model=model.encoder,
|
115 |
+
target_layers=target_layers,
|
116 |
+
use_cuda=use_cuda,
|
117 |
+
reshape_transform=reshape_transform,
|
118 |
+
ablation_layer=AblationLayerVit())
|
119 |
+
else:
|
120 |
+
cam = methods[method](model=model.encoder,
|
121 |
+
target_layers=target_layers,
|
122 |
+
use_cuda=use_cuda,
|
123 |
+
reshape_transform=reshape_transform)
|
124 |
+
|
125 |
+
rgb_img = cv2.imread(image_path, 1)[:, :, ::-1]
|
126 |
+
rgb_img = cv2.resize(rgb_img, (384, 384)) ## (224, 224)
|
127 |
+
rgb_img = np.float32(rgb_img) / 255
|
128 |
+
input_tensor = preprocess_image(rgb_img, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
129 |
+
|
130 |
+
targets = None
|
131 |
+
cam.batch_size = 16
|
132 |
+
|
133 |
+
grayscale_cam = cam(input_tensor=input_tensor, targets=targets, eigen_smooth=eigen_smooth, aug_smooth=aug_smooth)
|
134 |
+
grayscale_cam = grayscale_cam[0, :]
|
135 |
+
|
136 |
+
cam_image = show_cam_on_image(rgb_img, grayscale_cam)
|
137 |
+
output_file = os.path.join(output_path, 'gradcam_result.png')
|
138 |
+
cv2.imwrite(output_file, cam_image)
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
def reshape_transform(tensor, height=12, width=12): ### height=14, width=14 for ViT-based Model
|
143 |
+
batch_size, token_number, embed_dim = tensor.size()
|
144 |
+
if token_number < height * width:
|
145 |
+
pad = torch.zeros(batch_size, height * width - token_number, embed_dim, device=tensor.device)
|
146 |
+
tensor = torch.cat([tensor, pad], dim=1)
|
147 |
+
elif token_number > height * width:
|
148 |
+
tensor = tensor[:, :height * width, :]
|
149 |
+
|
150 |
+
result = tensor.reshape(batch_size, height, width, embed_dim)
|
151 |
+
result = result.transpose(2, 3).transpose(1, 2)
|
152 |
+
return result
|
153 |
+
|
154 |
+
|
155 |
+
# Example usage:
|
156 |
+
#image_path = "/home/chayan/CGI_Net/images/images/CXR1353_IM-0230-1001.png"
|
157 |
+
model_path = "./Model/"
|
158 |
+
output_path = "./CAM-Result/"
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
def sentence_case(paragraph):
|
163 |
+
sentences = paragraph.split('. ')
|
164 |
+
formatted_sentences = [sentence.capitalize() for sentence in sentences if sentence]
|
165 |
+
formatted_paragraph = '. '.join(formatted_sentences)
|
166 |
+
return formatted_paragraph
|
167 |
+
|
168 |
+
def num2sym_bullets(text, bullet='-'):
|
169 |
+
"""
|
170 |
+
Replaces '<num>.' bullet points with a specified symbol and formats the text as a bullet list.
|
171 |
+
|
172 |
+
Args:
|
173 |
+
text (str): Input text containing '<num>.' bullet points.
|
174 |
+
bullet (str): The symbol to replace '<num>.' with.
|
175 |
+
|
176 |
+
Returns:
|
177 |
+
str: Modified text with '<num>.' replaced and formatted as a bullet list.
|
178 |
+
"""
|
179 |
+
sentences = re.split(r'<num>\.\s', text)
|
180 |
+
formatted_text = '\n'.join(f'{bullet} {sentence.strip()}' for sentence in sentences if sentence.strip())
|
181 |
+
return formatted_text
|
182 |
+
|
183 |
+
def is_cxr(image_path):
|
184 |
+
"""
|
185 |
+
Checks if the uploaded image is a Chest X-ray using basic image processing.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
image_path (str): Path to the uploaded image.
|
189 |
+
|
190 |
+
Returns:
|
191 |
+
bool: True if the image is likely a Chest X-ray, False otherwise.
|
192 |
+
"""
|
193 |
+
try:
|
194 |
+
|
195 |
+
image = cv2.imread(image_path)
|
196 |
+
|
197 |
+
if image is None:
|
198 |
+
raise ValueError("Invalid image path.")
|
199 |
+
|
200 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
201 |
+
color_std = np.std(image, axis=2).mean()
|
202 |
+
|
203 |
+
if color_std > 0:
|
204 |
+
return False
|
205 |
+
|
206 |
+
return True
|
207 |
+
|
208 |
+
except Exception as e:
|
209 |
+
print(f"Error processing image: {e}")
|
210 |
+
return False
|
211 |
+
|
212 |
+
def dicom_to_png(dicom_file, png_file):
|
213 |
+
# Load DICOM file
|
214 |
+
dicom_data = pydicom.dcmread(dicom_file)
|
215 |
+
dicom_data.PhotometricInterpretation = 'MONOCHROME1'
|
216 |
+
|
217 |
+
# Normalize pixel values to 0-255
|
218 |
+
img = dicom_data.pixel_array
|
219 |
+
img = img.astype(np.float32)
|
220 |
+
|
221 |
+
img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX)
|
222 |
+
img = img.astype(np.uint8)
|
223 |
+
|
224 |
+
# Save as PNG
|
225 |
+
cv2.imwrite(png_file, img)
|
226 |
+
return img
|
227 |
+
|
228 |
+
|
229 |
+
Image_Captioner = pipeline("image-to-text", model = "./Model/", device = 0)
|
230 |
+
|
231 |
+
data_dir = "./CAM-Result"
|
232 |
+
|
233 |
+
@spaces.GPU(duration=300)
|
234 |
+
def xray_report_generator(Image_file, Query):
|
235 |
+
if Image_file[-4:] =='.dcm':
|
236 |
+
png_file = 'DCM2PNG.png'
|
237 |
+
dicom_to_png(Image_file, png_file)
|
238 |
+
Image_file = os.path.join(data_dir, png_file)
|
239 |
+
output = Image_Captioner(Image_file, max_new_tokens=512)
|
240 |
+
|
241 |
+
else:
|
242 |
+
output = Image_Captioner(Image_file, max_new_tokens=512)
|
243 |
+
|
244 |
+
result = output[0]['generated_text']
|
245 |
+
output_paragraph = sentence_case(result)
|
246 |
+
|
247 |
+
final_response = num2sym_bullets(output_paragraph, bullet='-')
|
248 |
+
|
249 |
+
query_prompt = f""" You are analyzing the doctor's query based on the patient's history and the generated chest X-ray report. Extract only the information relevant to the query.
|
250 |
+
If the report mentions the queried condition, write only the exact wording without any introduction. If the condition is not mentioned, respond with: 'No relevant findings related to [query condition].'.
|
251 |
+
"""
|
252 |
+
|
253 |
+
#If the condition is negated, respond with: 'There is no [query condition].'.
|
254 |
+
|
255 |
+
completion = client.chat.completions.create(
|
256 |
+
model="gpt-4-turbo", ### gpt-4-turbo ### gpt-3.5-turbo-0125
|
257 |
+
messages=[
|
258 |
+
{"role": "system", "content": query_prompt},
|
259 |
+
{"role": "user", "content": f"Generated Report: {final_response}\nHistory/Doctor's Query: {Query}"}
|
260 |
+
],
|
261 |
+
temperature=0.2)
|
262 |
+
query_response = completion.choices[0].message.content
|
263 |
+
|
264 |
+
generate_gradcam(Image_file, model_path, output_path, method='gradcam', use_cuda=True)
|
265 |
+
|
266 |
+
grad_cam_image = output_path + 'gradcam_result.png'
|
267 |
+
|
268 |
+
return grad_cam_image, final_response, query_response
|
269 |
+
|
270 |
+
|
271 |
+
# def save_feedback(feedback):
|
272 |
+
# feedback_dir = "Chayan/Feedback/" # Update this to your desired directory
|
273 |
+
# if not os.path.exists(feedback_dir):
|
274 |
+
# os.makedirs(feedback_dir)
|
275 |
+
# feedback_file = os.path.join(feedback_dir, "feedback.txt")
|
276 |
+
# with open(feedback_file, "a") as f:
|
277 |
+
# f.write(feedback + "\n")
|
278 |
+
# return "Feedback submitted successfully!"
|
279 |
+
|
280 |
+
|
281 |
+
def save_feedback(feedback):
|
282 |
+
feedback_dir = "Chayan/Feedback/" # Update this to your desired directory
|
283 |
+
if not os.path.exists(feedback_dir):
|
284 |
+
os.makedirs(feedback_dir)
|
285 |
+
feedback_file = os.path.join(feedback_dir, "feedback.txt")
|
286 |
+
|
287 |
+
try:
|
288 |
+
with open(feedback_file, "a") as f:
|
289 |
+
f.write(feedback + "\n")
|
290 |
+
print(f"Feedback saved at: {feedback_file}")
|
291 |
+
return "Feedback submitted successfully!"
|
292 |
+
except Exception as e:
|
293 |
+
print(f"Error saving feedback: {e}")
|
294 |
+
return "Failed to submit feedback!"
|
295 |
+
|
296 |
+
|
297 |
+
# Custom Theme Definition
|
298 |
+
class Seafoam(Base):
|
299 |
+
def __init__(
|
300 |
+
self,
|
301 |
+
*,
|
302 |
+
primary_hue: Union[colors.Color, str] = colors.emerald,
|
303 |
+
secondary_hue: Union[colors.Color, str] = colors.blue,
|
304 |
+
neutral_hue: Union[colors.Color, str] = colors.gray,
|
305 |
+
spacing_size: Union[sizes.Size, str] = sizes.spacing_md,
|
306 |
+
radius_size: Union[sizes.Size, str] = sizes.radius_md,
|
307 |
+
text_size: Union[sizes.Size, str] = sizes.text_lg,
|
308 |
+
font: Union[fonts.Font, str, Iterable[Union[fonts.Font, str]]] = (
|
309 |
+
fonts.GoogleFont("Quicksand"),
|
310 |
+
"ui-sans-serif",
|
311 |
+
"sans-serif",
|
312 |
+
),
|
313 |
+
font_mono: Union[fonts.Font, str, Iterable[Union[fonts.Font, str]]] = (
|
314 |
+
fonts.GoogleFont("IBM Plex Mono"),
|
315 |
+
"ui-monospace",
|
316 |
+
"monospace",
|
317 |
+
),
|
318 |
+
):
|
319 |
+
super().__init__(
|
320 |
+
primary_hue=primary_hue,
|
321 |
+
secondary_hue=secondary_hue,
|
322 |
+
neutral_hue=neutral_hue,
|
323 |
+
spacing_size=spacing_size,
|
324 |
+
radius_size=radius_size,
|
325 |
+
text_size=text_size,
|
326 |
+
font=font,
|
327 |
+
font_mono=font_mono,
|
328 |
+
)
|
329 |
+
|
330 |
+
self.set(
|
331 |
+
body_background_fill="linear-gradient(114.2deg, rgba(184,215,21,1) -15.3%, rgba(21,215,98,1) 14.5%, rgba(21,215,182,1) 38.7%, rgba(129,189,240,1) 58.8%, rgba(219,108,205,1) 77.3%, rgba(240,129,129,1) 88.5%)"
|
332 |
+
)
|
333 |
+
# Initialize the theme
|
334 |
+
seafoam = Seafoam()
|
335 |
+
|
336 |
+
|
337 |
+
|
338 |
+
# Custom CSS styles
|
339 |
+
custom_css = """
|
340 |
+
<style>
|
341 |
+
|
342 |
+
/* Set background color for the entire Gradio app */
|
343 |
+
body, .gradio-container {
|
344 |
+
background-color: #f2f7f5 !important;
|
345 |
+
}
|
346 |
+
|
347 |
+
/* Optional: Add padding or margin for aesthetics */
|
348 |
+
.gradio-container {
|
349 |
+
padding: 20px;
|
350 |
+
}
|
351 |
+
|
352 |
+
#title {
|
353 |
+
color: green;
|
354 |
+
font-size: 36px;
|
355 |
+
font-weight: bold;
|
356 |
+
}
|
357 |
+
#description {
|
358 |
+
color: green;
|
359 |
+
font-size: 22px;
|
360 |
+
}
|
361 |
+
|
362 |
+
#title-row {
|
363 |
+
display: flex;
|
364 |
+
align-items: center;
|
365 |
+
gap: 10px;
|
366 |
+
margin-bottom: 0px;
|
367 |
+
}
|
368 |
+
#title-header h1 {
|
369 |
+
margin: 0;
|
370 |
+
}
|
371 |
+
|
372 |
+
|
373 |
+
#submit-btn {
|
374 |
+
background-color: #f5dec6; /* Banana leaf */
|
375 |
+
color: green;
|
376 |
+
padding: 15px 32px;
|
377 |
+
text-align: center;
|
378 |
+
text-decoration: none;
|
379 |
+
display: inline-block;
|
380 |
+
font-size: 30px;
|
381 |
+
margin: 4px 2px;
|
382 |
+
cursor: pointer;
|
383 |
+
}
|
384 |
+
#submit-btn:hover {
|
385 |
+
background-color: #00FFFF;
|
386 |
+
}
|
387 |
+
|
388 |
+
|
389 |
+
.intext textarea {
|
390 |
+
color: green;
|
391 |
+
font-size: 20px;
|
392 |
+
font-weight: bold;
|
393 |
+
}
|
394 |
+
|
395 |
+
|
396 |
+
.small-button {
|
397 |
+
color: green;
|
398 |
+
padding: 5px 10px;
|
399 |
+
font-size: 20px;
|
400 |
+
}
|
401 |
+
|
402 |
+
</style>
|
403 |
+
"""
|
404 |
+
|
405 |
+
# Sample image paths
|
406 |
+
sample_images = [
|
407 |
+
"./Test-Images/0d930f0a-46f813a9-db3b137b-05142eef-eca3c5a7.jpg",
|
408 |
+
"./Test-Images/93681764-ec39480e-0518b12c-199850c2-f15118ab.jpg",
|
409 |
+
"./Test-Images/6ff741e9-6ea01eef-1bf10153-d1b6beba-590b6620.jpg"
|
410 |
+
#"sample4.png",
|
411 |
+
#"sample5.png"
|
412 |
+
]
|
413 |
+
|
414 |
+
def set_input_image(image_path):
|
415 |
+
return gr.update(value=image_path)
|
416 |
+
|
417 |
+
def show_contact_info():
|
418 |
+
yield gr.update(visible=True, value="""
|
419 |
+
**Contact Us:**
|
420 |
+
- Chayan Mondal
|
421 |
+
- Email: [email protected]
|
422 |
+
- Associate Prof. Sonny Pham
|
423 |
+
- Email: [email protected]
|
424 |
+
- Dr. Ashu Gupta
|
425 |
+
- Email: [email protected]
|
426 |
+
""")
|
427 |
+
# Wait for 20 seconds (you can adjust the time as needed)
|
428 |
+
time.sleep(20)
|
429 |
+
# Hide the content after 5 seconds
|
430 |
+
yield gr.update(visible=False)
|
431 |
+
|
432 |
+
def show_acknowledgment():
|
433 |
+
yield gr.update(visible=True, value="""
|
434 |
+
**Acknowledgment:**
|
435 |
+
This Research has been supported by the Western Australian Future Health Research and Innovation Fund.
|
436 |
+
""")
|
437 |
+
# Wait for 20 seconds
|
438 |
+
time.sleep(20)
|
439 |
+
# Hide the acknowledgment
|
440 |
+
yield gr.update(visible=False)
|
441 |
+
|
442 |
+
|
443 |
+
with gr.Blocks(theme=seafoam, css=custom_css) as demo:
|
444 |
+
|
445 |
+
#gr.HTML(custom_css) # Inject custom CSS
|
446 |
+
|
447 |
+
|
448 |
+
with gr.Row(elem_id="title-row"):
|
449 |
+
with gr.Column(scale=0):
|
450 |
+
gr.Image(
|
451 |
+
value="./AURA-CXR-Logo.png",
|
452 |
+
show_label=False,
|
453 |
+
width=60,
|
454 |
+
container=False
|
455 |
+
)
|
456 |
+
with gr.Column():
|
457 |
+
gr.Markdown(
|
458 |
+
"""
|
459 |
+
<h1 style="color:blue; font-size: 32px; font-weight: bold; margin: 0;">
|
460 |
+
AURA-CXR: Explainable Diagnosis of Chest Diseases from X-rays
|
461 |
+
</h1>
|
462 |
+
""",
|
463 |
+
elem_id="title-header"
|
464 |
+
)
|
465 |
+
|
466 |
+
gr.Markdown(
|
467 |
+
"<p id='description'>Upload an X-ray image and get its report with heat-map visualization.</p>"
|
468 |
+
)
|
469 |
+
|
470 |
+
|
471 |
+
|
472 |
+
# gr.Markdown(
|
473 |
+
# """
|
474 |
+
# <h1 style="color:blue; font-size: 36px; font-weight: bold; margin: 0;">AURA-CXR: Explainable Diagnosis of Chest Diseases from X-rays</h1>
|
475 |
+
# <p id="description">Upload an X-ray image and get its report with heat-map visualization.</p>
|
476 |
+
# """
|
477 |
+
# )
|
478 |
+
|
479 |
+
#<h1 style="color:blue; font-size: 36px; font-weight: bold">AURA-CXR: Explainable Diagnosis of Chest Diseases from X-rays</h1>
|
480 |
+
|
481 |
+
with gr.Row():
|
482 |
+
inputs = gr.File(label="Upload Chest X-ray Image File", type="filepath")
|
483 |
+
|
484 |
+
with gr.Row():
|
485 |
+
with gr.Column(scale=1, min_width=300):
|
486 |
+
outputs1 = gr.Image(label="Image Viewer")
|
487 |
+
history_query = gr.Textbox(label="History/Doctor's Query", elem_classes="intext")
|
488 |
+
with gr.Column(scale=1, min_width=300):
|
489 |
+
outputs2 = gr.Image(label="Grad_CAM-Visualization")
|
490 |
+
with gr.Column(scale=1, min_width=300):
|
491 |
+
outputs3 = gr.Textbox(label="Generated Report", elem_classes = "intext")
|
492 |
+
outputs4 = gr.Textbox(label = "Query's Response", elem_classes = "intext")
|
493 |
+
|
494 |
+
|
495 |
+
submit_btn = gr.Button("Generate Report", elem_id="submit-btn", variant="primary")
|
496 |
+
|
497 |
+
def show_image(file_path):
|
498 |
+
if is_cxr(file_path): # Check if it's a valid Chest X-ray
|
499 |
+
return file_path, "Valid Image" # Show the image in Image Viewer
|
500 |
+
else:
|
501 |
+
return None, "Invalid image. Please upload a proper Chest X-ray."
|
502 |
+
|
503 |
+
|
504 |
+
# Show the uploaded image immediately in the Image Viewer
|
505 |
+
inputs.change(
|
506 |
+
fn=show_image, # Calls the function to return the same file path
|
507 |
+
inputs=inputs,
|
508 |
+
outputs=[outputs1, outputs3]
|
509 |
+
)
|
510 |
+
|
511 |
+
|
512 |
+
|
513 |
+
|
514 |
+
submit_btn.click(
|
515 |
+
fn=xray_report_generator,
|
516 |
+
inputs=[inputs,history_query],
|
517 |
+
outputs=[outputs2, outputs3, outputs4])
|
518 |
+
|
519 |
+
|
520 |
+
gr.Markdown(
|
521 |
+
"""
|
522 |
+
<h2 style="color:green; font-size: 24px;">Or choose a sample image:</h2>
|
523 |
+
"""
|
524 |
+
)
|
525 |
+
|
526 |
+
with gr.Row():
|
527 |
+
for idx, sample_image in enumerate(sample_images):
|
528 |
+
with gr.Column(scale=1):
|
529 |
+
#sample_image_component = gr.Image(value=sample_image, interactive=False)
|
530 |
+
select_button = gr.Button(f"Select Sample Image {idx+1}")
|
531 |
+
select_button.click(
|
532 |
+
fn=set_input_image,
|
533 |
+
inputs=gr.State(value=sample_image),
|
534 |
+
outputs=inputs
|
535 |
+
)
|
536 |
+
|
537 |
+
|
538 |
+
# Feedback section
|
539 |
+
gr.Markdown(
|
540 |
+
"""
|
541 |
+
<h2 style="color:green; font-size: 24px;">Provide Your Valuable Feedback:</h2>
|
542 |
+
"""
|
543 |
+
)
|
544 |
+
|
545 |
+
with gr.Row():
|
546 |
+
feedback_input = gr.Textbox(label="Your Feedback", lines=4, placeholder="Enter your feedback here...")
|
547 |
+
feedback_submit_btn = gr.Button("Submit Feedback", elem_classes="small-button", variant="secondary")
|
548 |
+
feedback_output = gr.Textbox(label="Feedback Status", interactive=False)
|
549 |
+
|
550 |
+
|
551 |
+
|
552 |
+
feedback_submit_btn.click(
|
553 |
+
fn=save_feedback,
|
554 |
+
inputs=feedback_input,
|
555 |
+
outputs=feedback_output
|
556 |
+
)
|
557 |
+
|
558 |
+
|
559 |
+
# Buttons and Markdown for Contact Us and Acknowledgment
|
560 |
+
with gr.Row():
|
561 |
+
contact_btn = gr.Button("Contact Us", elem_classes="small-button", variant="secondary")
|
562 |
+
ack_btn = gr.Button("Acknowledgment", elem_classes="small-button", variant="secondary")
|
563 |
+
|
564 |
+
contact_info = gr.Markdown(visible=False) # Initially hidden
|
565 |
+
acknowledgment_info = gr.Markdown(visible=False) # Initially hidden
|
566 |
+
|
567 |
+
# Update the content and make it visible when the buttons are clicked
|
568 |
+
contact_btn.click(fn=show_contact_info, outputs=contact_info, show_progress=False)
|
569 |
+
ack_btn.click(fn=show_acknowledgment, outputs=acknowledgment_info, show_progress=False)
|
570 |
+
|
571 |
+
# Update the content and make it visible when the buttons are clicked
|
572 |
+
# contact_btn.click(fn=show_contact_info, outputs=contact_info, show_progress=False)
|
573 |
+
# ack_btn.click(fn=show_acknowledgment, outputs=acknowledgment_info, show_progress=False)
|
574 |
+
|
575 |
+
|
576 |
+
demo.launch(share=True)
|
577 |
+
|