File size: 17,815 Bytes
9736014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
import os
import transformers
from transformers import pipeline

### Gradio 
import gradio as gr
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
from typing import Union, Iterable
import time
#####


import cv2
import numpy as np
import pydicom
import re

##### Libraries For Grad-Cam-View
import os
import cv2
import numpy as np
import torch
from functools import partial
from torchvision import transforms
from pytorch_grad_cam import GradCAM, ScoreCAM, GradCAMPlusPlus, AblationCAM, XGradCAM, EigenCAM, EigenGradCAM, LayerCAM, FullGrad
from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image
from pytorch_grad_cam.ablation_layer import AblationLayerVit
from transformers import VisionEncoderDecoderModel


from transformers import AutoTokenizer
import transformers
import torch

from openai import OpenAI
client = OpenAI()

import spaces  # Import the spaces module for ZeroGPU


@spaces.GPU 
def generate_gradcam(image_path, model_path, output_path, method='gradcam', use_cuda=True, aug_smooth=False, eigen_smooth=False):
    methods = {
        "gradcam": GradCAM,
        "scorecam": ScoreCAM,
        "gradcam++": GradCAMPlusPlus,
        "ablationcam": AblationCAM,
        "xgradcam": XGradCAM,
        "eigencam": EigenCAM,
        "eigengradcam": EigenGradCAM,
        "layercam": LayerCAM,
        "fullgrad": FullGrad
    }

    if method not in methods:
        raise ValueError(f"Method should be one of {list(methods.keys())}")

    model = VisionEncoderDecoderModel.from_pretrained(model_path)
    model.encoder.eval()

    if use_cuda and torch.cuda.is_available():
        model.encoder = model.encoder.cuda()
    else:
        use_cuda = False

    #target_layers = [model.blocks[-1].norm1]  ## For ViT model
    #target_layers = model.blocks[-1].norm1    ## For EfficientNet-B7 model
    #target_layers = [model.encoder.encoder.layer[-1].layernorm_before]  ## For ViT-based VisionEncoderDecoder model
    target_layers = [model.encoder.encoder.layers[-1].blocks[-0].layernorm_after, model.encoder.encoder.layers[-1].blocks[-1].layernorm_after] ## [model.encoder.encoder.layers[-1].blocks[-1].layernorm_before, model.encoder.encoder.layers[-1].blocks[0].layernorm_before]   For Swin-based VisionEncoderDecoder model
    

    if method == "ablationcam":
        cam = methods[method](model=model.encoder,
                              target_layers=target_layers,
                              use_cuda=use_cuda,
                              reshape_transform=reshape_transform,
                              ablation_layer=AblationLayerVit())
    else:
        cam = methods[method](model=model.encoder,
                              target_layers=target_layers,
                              use_cuda=use_cuda,
                              reshape_transform=reshape_transform)

    rgb_img = cv2.imread(image_path, 1)[:, :, ::-1]
    rgb_img = cv2.resize(rgb_img, (384, 384)) ## (224, 224)
    rgb_img = np.float32(rgb_img) / 255
    input_tensor = preprocess_image(rgb_img, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])

    targets = None
    cam.batch_size = 16

    grayscale_cam = cam(input_tensor=input_tensor, targets=targets, eigen_smooth=eigen_smooth, aug_smooth=aug_smooth)
    grayscale_cam = grayscale_cam[0, :]

    cam_image = show_cam_on_image(rgb_img, grayscale_cam)
    output_file = os.path.join(output_path, 'gradcam_result.png')
    cv2.imwrite(output_file, cam_image)



def reshape_transform(tensor, height=12, width=12):  ### height=14, width=14 for ViT-based Model  
    batch_size, token_number, embed_dim = tensor.size()
    if token_number < height * width:
        pad = torch.zeros(batch_size, height * width - token_number, embed_dim, device=tensor.device)
        tensor = torch.cat([tensor, pad], dim=1)
    elif token_number > height * width:
        tensor = tensor[:, :height * width, :]

    result = tensor.reshape(batch_size, height, width, embed_dim)
    result = result.transpose(2, 3).transpose(1, 2)
    return result


# Example usage:
#image_path = "/home/chayan/CGI_Net/images/images/CXR1353_IM-0230-1001.png"
model_path = "./Model/"
output_path = "./CAM-Result/"



def sentence_case(paragraph):
    sentences = paragraph.split('. ')
    formatted_sentences = [sentence.capitalize() for sentence in sentences if sentence]
    formatted_paragraph = '. '.join(formatted_sentences)
    return formatted_paragraph

def num2sym_bullets(text, bullet='-'):
    """

    Replaces '<num>.' bullet points with a specified symbol and formats the text as a bullet list.

    

    Args:

        text (str): Input text containing '<num>.' bullet points.

        bullet (str): The symbol to replace '<num>.' with.

    

    Returns:

        str: Modified text with '<num>.' replaced and formatted as a bullet list.

    """
    sentences = re.split(r'<num>\.\s', text)
    formatted_text = '\n'.join(f'{bullet} {sentence.strip()}' for sentence in sentences if sentence.strip())
    return formatted_text

def is_cxr(image_path):
    """

    Checks if the uploaded image is a Chest X-ray using basic image processing.

    

    Args:

        image_path (str): Path to the uploaded image.

    

    Returns:

        bool: True if the image is likely a Chest X-ray, False otherwise.

    """
    try:
        
        image = cv2.imread(image_path)

        if image is None:
            raise ValueError("Invalid image path.")
    
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        color_std = np.std(image, axis=2).mean()
    
        if color_std > 0:
            return False
              
        return True
        
    except Exception as e:
        print(f"Error processing image: {e}")
        return False

def dicom_to_png(dicom_file, png_file):
    # Load DICOM file
    dicom_data = pydicom.dcmread(dicom_file)
    dicom_data.PhotometricInterpretation = 'MONOCHROME1'

    # Normalize pixel values to 0-255
    img = dicom_data.pixel_array
    img = img.astype(np.float32)

    img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX)
    img = img.astype(np.uint8)

    # Save as PNG
    cv2.imwrite(png_file, img)
    return img


Image_Captioner = pipeline("image-to-text", model = "./Model/", device = 0)

data_dir = "./CAM-Result"

@spaces.GPU(duration=300)
def xray_report_generator(Image_file, Query):
  if Image_file[-4:] =='.dcm':
    png_file = 'DCM2PNG.png'
    dicom_to_png(Image_file, png_file)
    Image_file = os.path.join(data_dir, png_file)
    output = Image_Captioner(Image_file, max_new_tokens=512)

  else:
    output = Image_Captioner(Image_file, max_new_tokens=512)

  result = output[0]['generated_text']
  output_paragraph = sentence_case(result)
  
  final_response = num2sym_bullets(output_paragraph, bullet='-')
  
  query_prompt = f""" You are analyzing the doctor's query based on the patient's history and the generated chest X-ray report. Extract only the information relevant to the query.

  If the report mentions the queried condition, write only the exact wording without any introduction. If the condition is not mentioned, respond with: 'No relevant findings related to [query condition].'.   

  """
  
  #If the condition is negated, respond with: 'There is no [query condition].'.
  
  completion = client.chat.completions.create(
  model="gpt-4-turbo",  ### gpt-4-turbo ### gpt-3.5-turbo-0125
  messages=[
    {"role": "system", "content": query_prompt},
    {"role": "user", "content": f"Generated Report: {final_response}\nHistory/Doctor's Query: {Query}"}
   ],
   temperature=0.2)
  query_response = completion.choices[0].message.content
  
  generate_gradcam(Image_file, model_path, output_path, method='gradcam', use_cuda=True)
  
  grad_cam_image =  output_path + 'gradcam_result.png'

  return grad_cam_image, final_response, query_response


# def save_feedback(feedback):
#     feedback_dir = "Chayan/Feedback/"  # Update this to your desired directory
#     if not os.path.exists(feedback_dir):
#         os.makedirs(feedback_dir)
#     feedback_file = os.path.join(feedback_dir, "feedback.txt")
#     with open(feedback_file, "a") as f:
#         f.write(feedback + "\n")
#     return "Feedback submitted successfully!"


def save_feedback(feedback):
    feedback_dir = "Chayan/Feedback/"  # Update this to your desired directory
    if not os.path.exists(feedback_dir):
        os.makedirs(feedback_dir)
    feedback_file = os.path.join(feedback_dir, "feedback.txt")
    
    try:
        with open(feedback_file, "a") as f:
            f.write(feedback + "\n")
        print(f"Feedback saved at: {feedback_file}")
        return "Feedback submitted successfully!"
    except Exception as e:
        print(f"Error saving feedback: {e}")
        return "Failed to submit feedback!"
  

# Custom Theme Definition
class Seafoam(Base):
    def __init__(

        self,

        *,

        primary_hue: Union[colors.Color, str] = colors.emerald,

        secondary_hue: Union[colors.Color, str] = colors.blue,

        neutral_hue: Union[colors.Color, str] = colors.gray,

        spacing_size: Union[sizes.Size, str] = sizes.spacing_md,

        radius_size: Union[sizes.Size, str] = sizes.radius_md,

        text_size: Union[sizes.Size, str] = sizes.text_lg,

        font: Union[fonts.Font, str, Iterable[Union[fonts.Font, str]]] = (

            fonts.GoogleFont("Quicksand"),

            "ui-sans-serif",

            "sans-serif",

        ),

        font_mono: Union[fonts.Font, str, Iterable[Union[fonts.Font, str]]] = (

            fonts.GoogleFont("IBM Plex Mono"),

            "ui-monospace",

            "monospace",

        ),

    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            spacing_size=spacing_size,
            radius_size=radius_size,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )
        
        self.set(
            body_background_fill="linear-gradient(114.2deg, rgba(184,215,21,1) -15.3%, rgba(21,215,98,1) 14.5%, rgba(21,215,182,1) 38.7%, rgba(129,189,240,1) 58.8%, rgba(219,108,205,1) 77.3%, rgba(240,129,129,1) 88.5%)"
        )
# Initialize the theme
seafoam = Seafoam()



# Custom CSS styles
custom_css = """

<style>



/* Set background color for the entire Gradio app */

body, .gradio-container {

    background-color: #f2f7f5 !important;

}



/* Optional: Add padding or margin for aesthetics */

.gradio-container {

    padding: 20px;

}



#title {

    color: green;

    font-size: 36px;

    font-weight: bold;

}

#description {

    color: green;

    font-size: 22px;

}



#title-row {

    display: flex;

    align-items: center;

    gap: 10px;

    margin-bottom: 0px;

}

#title-header h1 {

    margin: 0;

}





#submit-btn {

    background-color: #f5dec6; /* Banana leaf */

    color: green;

    padding: 15px 32px;

    text-align: center;

    text-decoration: none;

    display: inline-block;

    font-size: 30px;

    margin: 4px 2px;

    cursor: pointer;

}

#submit-btn:hover {

    background-color: #00FFFF;

}





.intext textarea {

    color: green;

    font-size: 20px;

    font-weight: bold;

}





.small-button {

    color: green;

    padding: 5px 10px;

    font-size: 20px;

}



</style>

"""

# Sample image paths
sample_images = [
    "./Test-Images/0d930f0a-46f813a9-db3b137b-05142eef-eca3c5a7.jpg",
    "./Test-Images/93681764-ec39480e-0518b12c-199850c2-f15118ab.jpg",
    "./Test-Images/6ff741e9-6ea01eef-1bf10153-d1b6beba-590b6620.jpg"
    #"sample4.png",
    #"sample5.png"
]

def set_input_image(image_path):
    return gr.update(value=image_path)

def show_contact_info():
    yield gr.update(visible=True, value="""

    **Contact Us:**

    - Chayan Mondal

    - Email: [email protected]

    - Associate Prof. Sonny Pham

    - Email: [email protected]

    - Dr. Ashu Gupta

    - Email: [email protected]

    """)
    # Wait for 20 seconds (you can adjust the time as needed)
    time.sleep(20)
    # Hide the content after 5 seconds
    yield gr.update(visible=False)

def show_acknowledgment():
    yield gr.update(visible=True, value="""

    **Acknowledgment:**

    This Research has been supported by the Western Australian Future Health Research and Innovation Fund.

    """)
    # Wait for 20 seconds
    time.sleep(20)
    # Hide the acknowledgment
    yield gr.update(visible=False)


with gr.Blocks(theme=seafoam, css=custom_css) as demo:

    #gr.HTML(custom_css)  # Inject custom CSS
    
    
    with gr.Row(elem_id="title-row"):
        with gr.Column(scale=0):
            gr.Image(
                value="./AURA-CXR-Logo.png",
                show_label=False,
                width=60,
                container=False
                )
        with gr.Column():
            gr.Markdown(
                """

                <h1 style="color:blue; font-size: 32px; font-weight: bold; margin: 0;">

                AURA-CXR: Explainable Diagnosis of Chest Diseases from X-rays

                </h1>

                """,
                elem_id="title-header"
            )

    gr.Markdown(
        "<p id='description'>Upload an X-ray image and get its report with heat-map visualization.</p>"
    )
    
    

   # gr.Markdown(
   #      """
   #      <h1 style="color:blue; font-size: 36px; font-weight: bold; margin: 0;">AURA-CXR: Explainable Diagnosis of Chest Diseases from X-rays</h1>
   #       <p id="description">Upload an X-ray image and get its report with heat-map visualization.</p>
   #     """
   # )
    
    #<h1 style="color:blue; font-size: 36px; font-weight: bold">AURA-CXR: Explainable Diagnosis of Chest Diseases from X-rays</h1>

    with gr.Row():
        inputs = gr.File(label="Upload Chest X-ray Image File", type="filepath")
    
    with gr.Row():
        with gr.Column(scale=1, min_width=300):
            outputs1 = gr.Image(label="Image Viewer")
            history_query = gr.Textbox(label="History/Doctor's Query", elem_classes="intext")
        with gr.Column(scale=1, min_width=300):
            outputs2 = gr.Image(label="Grad_CAM-Visualization")
        with gr.Column(scale=1, min_width=300):
            outputs3 = gr.Textbox(label="Generated Report", elem_classes = "intext")
            outputs4 = gr.Textbox(label = "Query's Response", elem_classes = "intext")
            

    submit_btn = gr.Button("Generate Report", elem_id="submit-btn", variant="primary")
    
    def show_image(file_path):
        if is_cxr(file_path):  # Check if it's a valid Chest X-ray
            return file_path, "Valid Image"   # Show the image in Image Viewer
        else:
            return None, "Invalid image. Please upload a proper Chest X-ray." 
            
            
    # Show the uploaded image immediately in the Image Viewer
    inputs.change(
        fn=show_image,  # Calls the function to return the same file path
        inputs=inputs,
        outputs=[outputs1, outputs3]
    )
    
    
    
    
    submit_btn.click(
        fn=xray_report_generator,
        inputs=[inputs,history_query],
        outputs=[outputs2, outputs3, outputs4])
        
    
    gr.Markdown(
        """

        <h2 style="color:green; font-size: 24px;">Or choose a sample image:</h2>

        """
    )

    with gr.Row():
        for idx, sample_image in enumerate(sample_images):
            with gr.Column(scale=1):
                #sample_image_component = gr.Image(value=sample_image, interactive=False)
                select_button = gr.Button(f"Select Sample Image {idx+1}")
                select_button.click(
                    fn=set_input_image,
                    inputs=gr.State(value=sample_image),
                    outputs=inputs
                )


      # Feedback section
    gr.Markdown(
        """

        <h2 style="color:green; font-size: 24px;">Provide Your Valuable Feedback:</h2>

        """
    )

    with gr.Row():
        feedback_input = gr.Textbox(label="Your Feedback", lines=4, placeholder="Enter your feedback here...")
        feedback_submit_btn = gr.Button("Submit Feedback", elem_classes="small-button", variant="secondary")
        feedback_output = gr.Textbox(label="Feedback Status", interactive=False)

    

    feedback_submit_btn.click(
        fn=save_feedback,
        inputs=feedback_input,
        outputs=feedback_output
    )
   

    # Buttons and Markdown for Contact Us and Acknowledgment
    with gr.Row():
        contact_btn = gr.Button("Contact Us", elem_classes="small-button", variant="secondary")
        ack_btn = gr.Button("Acknowledgment", elem_classes="small-button", variant="secondary")

    contact_info = gr.Markdown(visible=False)  # Initially hidden
    acknowledgment_info = gr.Markdown(visible=False)  # Initially hidden

    # Update the content and make it visible when the buttons are clicked
    contact_btn.click(fn=show_contact_info, outputs=contact_info, show_progress=False)
    ack_btn.click(fn=show_acknowledgment, outputs=acknowledgment_info, show_progress=False)

    # Update the content and make it visible when the buttons are clicked
    # contact_btn.click(fn=show_contact_info, outputs=contact_info, show_progress=False)
    # ack_btn.click(fn=show_acknowledgment, outputs=acknowledgment_info, show_progress=False)

   
demo.launch(share=True)