feiyang-cai commited on
Commit
97a0352
·
verified ·
1 Parent(s): 84da074

Update utils.py

Browse files
Files changed (1) hide show
  1. utils.py +5 -2
utils.py CHANGED
@@ -160,6 +160,7 @@ class MolecularPropertyPredictionModel():
160
  num_labels=1,
161
  finetuning_task="classification", # this is not about our task type
162
  trust_remote_code=True,
 
163
  )
164
 
165
  self.base_model = AutoModelForSequenceClassification.from_pretrained(
@@ -167,12 +168,14 @@ class MolecularPropertyPredictionModel():
167
  config=config,
168
  device_map="cpu",
169
  trust_remote_code=True,
 
170
  )
171
 
172
  # load the tokenizer
173
  self.tokenizer = AutoTokenizer.from_pretrained(
174
  "ChemFM/admet_ppbr_az",
175
  trust_remote_code=True,
 
176
  )
177
  special_tokens_dict = dict(pad_token=DEFAULT_PAD_TOKEN)
178
  smart_tokenizer_and_embedding_resize(
@@ -201,9 +204,9 @@ class MolecularPropertyPredictionModel():
201
  # switch adapter
202
  try:
203
  self.adapter_name = adapter_name
204
- self.lora_model = PeftModel.from_pretrained(self.base_model, adapter_id)
205
  if adapter_name not in self.apapter_scaler_path:
206
- self.apapter_scaler_path[adapter_name] = hf_hub_download(adapter_id, filename="scaler.pkl")
207
  if os.path.exists(self.apapter_scaler_path[adapter_name]):
208
  self.scaler = pickle.load(open(self.apapter_scaler_path[adapter_name], "rb"))
209
  else:
 
160
  num_labels=1,
161
  finetuning_task="classification", # this is not about our task type
162
  trust_remote_code=True,
163
+ auth_token = os.environ.get("TOKEN_FROM_SECRET") or True
164
  )
165
 
166
  self.base_model = AutoModelForSequenceClassification.from_pretrained(
 
168
  config=config,
169
  device_map="cpu",
170
  trust_remote_code=True,
171
+ auth_token = os.environ.get("TOKEN_FROM_SECRET") or True
172
  )
173
 
174
  # load the tokenizer
175
  self.tokenizer = AutoTokenizer.from_pretrained(
176
  "ChemFM/admet_ppbr_az",
177
  trust_remote_code=True,
178
+ auth_token = os.environ.get("TOKEN_FROM_SECRET") or True
179
  )
180
  special_tokens_dict = dict(pad_token=DEFAULT_PAD_TOKEN)
181
  smart_tokenizer_and_embedding_resize(
 
204
  # switch adapter
205
  try:
206
  self.adapter_name = adapter_name
207
+ self.lora_model = PeftModel.from_pretrained(self.base_model, adapter_id, auth_token = os.environ.get("TOKEN_FROM_SECRET") or True)
208
  if adapter_name not in self.apapter_scaler_path:
209
+ self.apapter_scaler_path[adapter_name] = hf_hub_download(adapter_id, filename="scaler.pkl", auth_token = os.environ.get("TOKEN_FROM_SECRET") or True)
210
  if os.path.exists(self.apapter_scaler_path[adapter_name]):
211
  self.scaler = pickle.load(open(self.apapter_scaler_path[adapter_name], "rb"))
212
  else: