Commit
·
d84b0a6
1
Parent(s):
8b9fe11
revise the descriptions
Browse files- app.py +20 -12
- dataset_descriptions.json +44 -0
- utils.py +21 -9
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import HfApi, get_collection, list_collections
|
3 |
-
from utils import MolecularPropertyPredictionModel,
|
4 |
import pandas as pd
|
5 |
import os
|
6 |
|
@@ -12,22 +12,26 @@ def get_models():
|
|
12 |
if item.item_type == "model":
|
13 |
item_name = item.item_id.split("/")[-1]
|
14 |
models[item_name] = item.item_id
|
15 |
-
assert item_name in
|
16 |
assert item_name in dataset_descriptions, f"{item_name} is not in the dataset_descriptions"
|
17 |
|
18 |
return models
|
19 |
|
20 |
candidate_models = get_models()
|
21 |
-
properties =
|
|
|
22 |
model = MolecularPropertyPredictionModel(candidate_models)
|
23 |
|
24 |
def get_description(property_name):
|
25 |
-
|
|
|
26 |
|
27 |
def predict_single_label(smiles, property_name):
|
|
|
|
|
28 |
try:
|
29 |
-
adapter_id = candidate_models[
|
30 |
-
info = model.swith_adapter(
|
31 |
|
32 |
running_status = None
|
33 |
if info == "keep":
|
@@ -45,7 +49,8 @@ def predict_single_label(smiles, property_name):
|
|
45 |
return "NA", running_status
|
46 |
|
47 |
#prediction = model.predict(smiles, property_name, adapter_id)
|
48 |
-
|
|
|
49 |
if prediction is None:
|
50 |
return "NA", "Invalid SMILES string"
|
51 |
|
@@ -60,9 +65,10 @@ def predict_single_label(smiles, property_name):
|
|
60 |
return prediction, "Prediction is done"
|
61 |
|
62 |
def predict_file(file, property_name):
|
|
|
63 |
try:
|
64 |
-
adapter_id = candidate_models[
|
65 |
-
info = model.swith_adapter(
|
66 |
|
67 |
running_status = None
|
68 |
if info == "keep":
|
@@ -81,7 +87,7 @@ def predict_file(file, property_name):
|
|
81 |
|
82 |
df = pd.read_csv(file)
|
83 |
# we have already checked the file contains the "smiles" column
|
84 |
-
df = model.predict_file(df,
|
85 |
# we should save this file to the disk to be downloaded
|
86 |
# rename the file to have "_prediction" suffix
|
87 |
prediction_file = file.replace(".csv", "_prediction.csv") if file.endswith(".csv") else file.replace(".smi", "_prediction.csv")
|
@@ -157,10 +163,12 @@ def build_inference():
|
|
157 |
with gr.Blocks() as demo:
|
158 |
# first row - Dropdown input
|
159 |
#with gr.Row():
|
160 |
-
|
|
|
|
|
161 |
description_box = gr.Textbox(label="Property description", lines=5,
|
162 |
interactive=False,
|
163 |
-
value=dataset_descriptions[
|
164 |
# third row - Textbox input and prediction label
|
165 |
with gr.Row(equal_height=True):
|
166 |
with gr.Column():
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import HfApi, get_collection, list_collections
|
3 |
+
from utils import MolecularPropertyPredictionModel, dataset_task_types, dataset_descriptions, dataset_property_names, dataset_property_names_to_dataset
|
4 |
import pandas as pd
|
5 |
import os
|
6 |
|
|
|
12 |
if item.item_type == "model":
|
13 |
item_name = item.item_id.split("/")[-1]
|
14 |
models[item_name] = item.item_id
|
15 |
+
assert item_name in dataset_task_types, f"{item_name} is not in the task_types"
|
16 |
assert item_name in dataset_descriptions, f"{item_name} is not in the dataset_descriptions"
|
17 |
|
18 |
return models
|
19 |
|
20 |
candidate_models = get_models()
|
21 |
+
properties = [dataset_property_names[item] for item in candidate_models.keys()]
|
22 |
+
property_names = list(candidate_models.keys())
|
23 |
model = MolecularPropertyPredictionModel(candidate_models)
|
24 |
|
25 |
def get_description(property_name):
|
26 |
+
property_id = dataset_property_names_to_dataset[property_name]
|
27 |
+
return dataset_descriptions[property_id]
|
28 |
|
29 |
def predict_single_label(smiles, property_name):
|
30 |
+
property_id = dataset_property_names_to_dataset[property_name]
|
31 |
+
|
32 |
try:
|
33 |
+
adapter_id = candidate_models[property_id]
|
34 |
+
info = model.swith_adapter(property_id, adapter_id)
|
35 |
|
36 |
running_status = None
|
37 |
if info == "keep":
|
|
|
49 |
return "NA", running_status
|
50 |
|
51 |
#prediction = model.predict(smiles, property_name, adapter_id)
|
52 |
+
print("hello4")
|
53 |
+
prediction = model.predict_single_smiles(smiles, dataset_task_types[property_id])
|
54 |
if prediction is None:
|
55 |
return "NA", "Invalid SMILES string"
|
56 |
|
|
|
65 |
return prediction, "Prediction is done"
|
66 |
|
67 |
def predict_file(file, property_name):
|
68 |
+
property_id = dataset_property_names_to_dataset[property_name]
|
69 |
try:
|
70 |
+
adapter_id = candidate_models[property_id]
|
71 |
+
info = model.swith_adapter(property_id, adapter_id)
|
72 |
|
73 |
running_status = None
|
74 |
if info == "keep":
|
|
|
87 |
|
88 |
df = pd.read_csv(file)
|
89 |
# we have already checked the file contains the "smiles" column
|
90 |
+
df = model.predict_file(df, dataset_task_types[property_id])
|
91 |
# we should save this file to the disk to be downloaded
|
92 |
# rename the file to have "_prediction" suffix
|
93 |
prediction_file = file.replace(".csv", "_prediction.csv") if file.endswith(".csv") else file.replace(".smi", "_prediction.csv")
|
|
|
163 |
with gr.Blocks() as demo:
|
164 |
# first row - Dropdown input
|
165 |
#with gr.Row():
|
166 |
+
print(property_names[0].lower())
|
167 |
+
print(properties)
|
168 |
+
dropdown = gr.Dropdown(properties, label="Property", value=dataset_property_names[property_names[0].lower()])
|
169 |
description_box = gr.Textbox(label="Property description", lines=5,
|
170 |
interactive=False,
|
171 |
+
value=dataset_descriptions[property_names[0].lower()])
|
172 |
# third row - Textbox input and prediction label
|
173 |
with gr.Row(equal_height=True):
|
174 |
with gr.Column():
|
dataset_descriptions.json
CHANGED
@@ -1,112 +1,156 @@
|
|
1 |
{
|
2 |
"ADMET_Caco2_Wang": {
|
3 |
"task_type": "regression",
|
|
|
4 |
"description": "predict drug permeability, measured in cm/s, using the Caco-2 cell line as an in vitro model to simulate human intestinal tissue permeability",
|
|
|
5 |
"num_molecules": 906
|
6 |
},
|
7 |
"ADMET_Bioavailability_Ma": {
|
8 |
"task_type": "classification",
|
|
|
9 |
"description": "predict oral bioavailability with binary labels, indicating the rate and extent a drug becomes available at its site of action",
|
|
|
10 |
"num_molecules": 640
|
11 |
},
|
12 |
"ADMET_Lipophilicity_AstraZeneca": {
|
13 |
"task_type": "regression",
|
|
|
14 |
"description": "predict lipophilicity with continuous labels, measured as a log-ratio, indicating a drug's ability to dissolve in lipid environments",
|
|
|
15 |
"num_molecules": 4200
|
16 |
},
|
17 |
"ADMET_Solubility_AqSolDB": {
|
18 |
"task_type": "regression",
|
|
|
19 |
"description": "predict aqueous solubility with continuous labels, measured in log mol/L, indicating a drug's ability to dissolve in water",
|
|
|
20 |
"num_molecules": 9982
|
21 |
},
|
22 |
"ADMET_HIA_Hou": {
|
23 |
"task_type": "classification",
|
|
|
24 |
"description": "predict human intestinal absorption (HIA) with binary labels, indicating a drug's ability to be absorbed into the bloodstream",
|
|
|
25 |
"num_molecules": 578
|
26 |
},
|
27 |
"ADMET_Pgp_Broccatelli": {
|
28 |
"task_type": "classification",
|
|
|
29 |
"description": "predict P-glycoprotein (Pgp) inhibition with binary labels, indicating a drug's potential to alter bioavailability and overcome multidrug resistance",
|
|
|
30 |
"num_molecules": 1212
|
31 |
},
|
32 |
"ADMET_BBB_Martins": {
|
33 |
"task_type": "classification",
|
|
|
34 |
"description": "predict blood-brain barrier permeability with binary labels, indicating a drug's ability to penetrate the barrier to reach the brain",
|
|
|
35 |
"num_molecules": 1915
|
36 |
},
|
37 |
"ADMET_PPBR_AZ": {
|
38 |
"task_type": "regression",
|
|
|
39 |
"description": "predict plasma protein binding rate with continuous labels, indicating the percentage of a drug bound to plasma proteins in the blood",
|
|
|
40 |
"num_molecules": 1797
|
41 |
},
|
42 |
"ADMET_VDss_Lombardo": {
|
43 |
"task_type": "regression",
|
|
|
44 |
"description": "predict the volume of distribution at steady state (VDss), indicating drug concentration in tissues versus blood",
|
|
|
45 |
"num_molecules": 1130
|
46 |
},
|
47 |
"ADMET_CYP2C9_Veith": {
|
48 |
"task_type": "classification",
|
|
|
49 |
"description": "predict CYP2C9 inhibition with binary labels, indicating the drug's ability to inhibit the CYP2C9 enzyme involved in metabolism",
|
|
|
50 |
"num_molecules": 12092
|
51 |
},
|
52 |
"ADMET_CYP2D6_Veith": {
|
53 |
"task_type": "classification",
|
|
|
54 |
"description": "predict CYP2D6 inhibition with binary labels, indicating the drug's potential to inhibit the CYP2D6 enzyme involved in metabolism",
|
|
|
55 |
"num_molecules": 13130
|
56 |
},
|
57 |
"ADMET_CYP3A4_Veith": {
|
58 |
"task_type": "classification",
|
|
|
59 |
"description": "predict CPY3A4 inhibition with binary labels, indicating the drug's ability to inhibit the CPY3A4 enzyme involved in metabolism",
|
|
|
60 |
"num_molecules": 12328
|
61 |
},
|
62 |
"ADMET_CYP2C9_Substrate_CarbonMangels": {
|
63 |
"task_type": "classification",
|
|
|
64 |
"description": "predict whether a drug is a substrate of the CYP2C9 enzyme with binary labels, indicating its potential to be metabolized",
|
|
|
65 |
"num_molecules": 666
|
66 |
},
|
67 |
"ADMET_CYP2D6_Substrate_CarbonMangels": {
|
68 |
"task_type": "classification",
|
|
|
69 |
"description": "predict whether a drug is a substrate of the CYP2D6 enzyme with binary labels, indicating its potential to be metabolized",
|
|
|
70 |
"num_molecules": 664
|
71 |
},
|
72 |
"ADMET_CYP3A4_Substrate_CarbonMangels": {
|
73 |
"task_type": "classification",
|
|
|
74 |
"description": "predict whether a drug is a substrate of the CYP3A4 enzyme with binary labels, indicating its potential to be metabolized",
|
|
|
75 |
"num_molecules": 667
|
76 |
},
|
77 |
"ADMET_Half_Life_Obach": {
|
78 |
"task_type": "regression",
|
|
|
79 |
"description": "predict the half-life duration of a drug, measured in hours, indicating the time for its concentration to reduce by half",
|
|
|
80 |
"num_molecules": 667
|
81 |
},
|
82 |
"ADMET_Clearance_Hepatocyte_AZ": {
|
83 |
"task_type": "regression",
|
|
|
84 |
"description": "predict drug clearance, measured in \u03bcL/min/10^6 cells, from hepatocyte experiments, indicating the rate at which the drug is removed from body",
|
|
|
85 |
"num_molecules": 1020
|
86 |
},
|
87 |
"ADMET_Clearance_Microsome_AZ": {
|
88 |
"task_type": "regression",
|
|
|
89 |
"description": "predict drug clearance, measured in mL/min/g, from microsome experiments, indicating the rate at which the drug is removed from body",
|
|
|
90 |
"num_molecules": 1102
|
91 |
},
|
92 |
"ADMET_LD50_Zhu": {
|
93 |
"task_type": "regression",
|
|
|
94 |
"description": "predict the acute toxicity of a drug, measured as the dose leading to lethal effects in log(kg/mol)",
|
|
|
95 |
"num_molecules": 7385
|
96 |
},
|
97 |
"ADMET_hERG": {
|
98 |
"task_type": "classification",
|
|
|
99 |
"description": "predict whether a drug blocks the hERG channel, which is crucial for heart rhythm, potentially leading to adverse effects",
|
|
|
100 |
"num_molecules": 648
|
101 |
},
|
102 |
"ADMET_AMES": {
|
103 |
"task_type": "classification",
|
|
|
104 |
"description": "predict whether a drug is mutagenic with binary labels, indicating its ability to induce genetic alterations",
|
|
|
105 |
"num_molecules": 7255
|
106 |
},
|
107 |
"ADMET_DILI": {
|
108 |
"task_type": "classification",
|
|
|
109 |
"description": "predict whether a drug can cause liver injury with binary labels, indicating its potential for hepatotoxicity",
|
|
|
110 |
"num_molecules": 475
|
111 |
}
|
112 |
}
|
|
|
1 |
{
|
2 |
"ADMET_Caco2_Wang": {
|
3 |
"task_type": "regression",
|
4 |
+
"task_name": "Drug Permeability",
|
5 |
"description": "predict drug permeability, measured in cm/s, using the Caco-2 cell line as an in vitro model to simulate human intestinal tissue permeability",
|
6 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#caco-2-cell-effective-permeability-wang-et-al",
|
7 |
"num_molecules": 906
|
8 |
},
|
9 |
"ADMET_Bioavailability_Ma": {
|
10 |
"task_type": "classification",
|
11 |
+
"task_name": "Drug Oral Bioavailability",
|
12 |
"description": "predict oral bioavailability with binary labels, indicating the rate and extent a drug becomes available at its site of action",
|
13 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#bioavailability-ma-et-al",
|
14 |
"num_molecules": 640
|
15 |
},
|
16 |
"ADMET_Lipophilicity_AstraZeneca": {
|
17 |
"task_type": "regression",
|
18 |
+
"task_name": "Drug Lipophilicity",
|
19 |
"description": "predict lipophilicity with continuous labels, measured as a log-ratio, indicating a drug's ability to dissolve in lipid environments",
|
20 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#lipophilicity-astrazeneca",
|
21 |
"num_molecules": 4200
|
22 |
},
|
23 |
"ADMET_Solubility_AqSolDB": {
|
24 |
"task_type": "regression",
|
25 |
+
"task_name": "Drug Aqueous Solubility",
|
26 |
"description": "predict aqueous solubility with continuous labels, measured in log mol/L, indicating a drug's ability to dissolve in water",
|
27 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#solubility-aqsoldb",
|
28 |
"num_molecules": 9982
|
29 |
},
|
30 |
"ADMET_HIA_Hou": {
|
31 |
"task_type": "classification",
|
32 |
+
"task_name": "Drug Human Intestinal Absorption",
|
33 |
"description": "predict human intestinal absorption (HIA) with binary labels, indicating a drug's ability to be absorbed into the bloodstream",
|
34 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#hia-human-intestinal-absorption-hou-et-al",
|
35 |
"num_molecules": 578
|
36 |
},
|
37 |
"ADMET_Pgp_Broccatelli": {
|
38 |
"task_type": "classification",
|
39 |
+
"task_name": "P-glycoprotein Inhibition",
|
40 |
"description": "predict P-glycoprotein (Pgp) inhibition with binary labels, indicating a drug's potential to alter bioavailability and overcome multidrug resistance",
|
41 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#pgp-p-glycoprotein-inhibition-broccatelli-et-al",
|
42 |
"num_molecules": 1212
|
43 |
},
|
44 |
"ADMET_BBB_Martins": {
|
45 |
"task_type": "classification",
|
46 |
+
"task_name": "Blood-Brain Barrier Permeability",
|
47 |
"description": "predict blood-brain barrier permeability with binary labels, indicating a drug's ability to penetrate the barrier to reach the brain",
|
48 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#bbb-blood-brain-barrier-martins-et-al",
|
49 |
"num_molecules": 1915
|
50 |
},
|
51 |
"ADMET_PPBR_AZ": {
|
52 |
"task_type": "regression",
|
53 |
+
"task_name": "Plasma Protein Binding Rate",
|
54 |
"description": "predict plasma protein binding rate with continuous labels, indicating the percentage of a drug bound to plasma proteins in the blood",
|
55 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#ppbr-plasma-protein-binding-rate-astrazeneca",
|
56 |
"num_molecules": 1797
|
57 |
},
|
58 |
"ADMET_VDss_Lombardo": {
|
59 |
"task_type": "regression",
|
60 |
+
"task_name": "Volume of Distribution at Steady State",
|
61 |
"description": "predict the volume of distribution at steady state (VDss), indicating drug concentration in tissues versus blood",
|
62 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#vdss-volumn-of-distribution-at-steady-state-lombardo-et-al",
|
63 |
"num_molecules": 1130
|
64 |
},
|
65 |
"ADMET_CYP2C9_Veith": {
|
66 |
"task_type": "classification",
|
67 |
+
"task_name": "CYP2C9 Inhibition",
|
68 |
"description": "predict CYP2C9 inhibition with binary labels, indicating the drug's ability to inhibit the CYP2C9 enzyme involved in metabolism",
|
69 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp-p450-2c9-inhibition-veith-et-al",
|
70 |
"num_molecules": 12092
|
71 |
},
|
72 |
"ADMET_CYP2D6_Veith": {
|
73 |
"task_type": "classification",
|
74 |
+
"task_name": "CYP2D6 Inhibition",
|
75 |
"description": "predict CYP2D6 inhibition with binary labels, indicating the drug's potential to inhibit the CYP2D6 enzyme involved in metabolism",
|
76 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp-p450-2d6-inhibition-veith-et-al",
|
77 |
"num_molecules": 13130
|
78 |
},
|
79 |
"ADMET_CYP3A4_Veith": {
|
80 |
"task_type": "classification",
|
81 |
+
"task_name": "CPY3A4 Inhibition",
|
82 |
"description": "predict CPY3A4 inhibition with binary labels, indicating the drug's ability to inhibit the CPY3A4 enzyme involved in metabolism",
|
83 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp-p450-3a4-inhibition-veith-et-al",
|
84 |
"num_molecules": 12328
|
85 |
},
|
86 |
"ADMET_CYP2C9_Substrate_CarbonMangels": {
|
87 |
"task_type": "classification",
|
88 |
+
"task_name": "CYP2C9 Substrate",
|
89 |
"description": "predict whether a drug is a substrate of the CYP2C9 enzyme with binary labels, indicating its potential to be metabolized",
|
90 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp2c9-substrate-carbon-mangels-et-al",
|
91 |
"num_molecules": 666
|
92 |
},
|
93 |
"ADMET_CYP2D6_Substrate_CarbonMangels": {
|
94 |
"task_type": "classification",
|
95 |
+
"task_name": "CYP2D6 Substrate",
|
96 |
"description": "predict whether a drug is a substrate of the CYP2D6 enzyme with binary labels, indicating its potential to be metabolized",
|
97 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp2d6-substrate-carbon-mangels-et-al",
|
98 |
"num_molecules": 664
|
99 |
},
|
100 |
"ADMET_CYP3A4_Substrate_CarbonMangels": {
|
101 |
"task_type": "classification",
|
102 |
+
"task_name": "CYP3A4 Substrate",
|
103 |
"description": "predict whether a drug is a substrate of the CYP3A4 enzyme with binary labels, indicating its potential to be metabolized",
|
104 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp3a4-substrate-carbon-mangels-et-al",
|
105 |
"num_molecules": 667
|
106 |
},
|
107 |
"ADMET_Half_Life_Obach": {
|
108 |
"task_type": "regression",
|
109 |
+
"task_name": "Drug Half-Life Duration",
|
110 |
"description": "predict the half-life duration of a drug, measured in hours, indicating the time for its concentration to reduce by half",
|
111 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#half-life-obach-et-al",
|
112 |
"num_molecules": 667
|
113 |
},
|
114 |
"ADMET_Clearance_Hepatocyte_AZ": {
|
115 |
"task_type": "regression",
|
116 |
+
"task_name": "Drug Clearance from Hepatocyte Experiments",
|
117 |
"description": "predict drug clearance, measured in \u03bcL/min/10^6 cells, from hepatocyte experiments, indicating the rate at which the drug is removed from body",
|
118 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#clearance-astrazeneca",
|
119 |
"num_molecules": 1020
|
120 |
},
|
121 |
"ADMET_Clearance_Microsome_AZ": {
|
122 |
"task_type": "regression",
|
123 |
+
"task_name": "Drug Clearance from Microsome Experiments",
|
124 |
"description": "predict drug clearance, measured in mL/min/g, from microsome experiments, indicating the rate at which the drug is removed from body",
|
125 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#clearance-astrazeneca",
|
126 |
"num_molecules": 1102
|
127 |
},
|
128 |
"ADMET_LD50_Zhu": {
|
129 |
"task_type": "regression",
|
130 |
+
"task_name": "Drug Acute Toxicity",
|
131 |
"description": "predict the acute toxicity of a drug, measured as the dose leading to lethal effects in log(kg/mol)",
|
132 |
+
"url": "https://tdcommons.ai/single_pred_tasks/tox#acute-toxicity-ld50",
|
133 |
"num_molecules": 7385
|
134 |
},
|
135 |
"ADMET_hERG": {
|
136 |
"task_type": "classification",
|
137 |
+
"task_name": "hERG Channel Blockage",
|
138 |
"description": "predict whether a drug blocks the hERG channel, which is crucial for heart rhythm, potentially leading to adverse effects",
|
139 |
+
"url": "https://tdcommons.ai/single_pred_tasks/tox#herg-blockers",
|
140 |
"num_molecules": 648
|
141 |
},
|
142 |
"ADMET_AMES": {
|
143 |
"task_type": "classification",
|
144 |
+
"task_name": "Drug Mutagenicity",
|
145 |
"description": "predict whether a drug is mutagenic with binary labels, indicating its ability to induce genetic alterations",
|
146 |
+
"url": "https://tdcommons.ai/single_pred_tasks/tox#ames-mutagenicity",
|
147 |
"num_molecules": 7255
|
148 |
},
|
149 |
"ADMET_DILI": {
|
150 |
"task_type": "classification",
|
151 |
+
"task_name": "Drug-Induced Liver Injury",
|
152 |
"description": "predict whether a drug can cause liver injury with binary labels, indicating its potential for hepatotoxicity",
|
153 |
+
"url": "https://tdcommons.ai/single_pred_tasks/tox#dili-drug-induced-liver-injury",
|
154 |
"num_molecules": 475
|
155 |
}
|
156 |
}
|
utils.py
CHANGED
@@ -39,22 +39,30 @@ from rdkit import RDLogger, Chem
|
|
39 |
RDLogger.DisableLog('rdApp.*')
|
40 |
|
41 |
# we have a dictionary to store the task types of the models
|
42 |
-
task_types = {
|
43 |
-
"
|
44 |
-
"
|
45 |
-
|
|
|
46 |
|
47 |
# read the dataset descriptions
|
48 |
with open("dataset_descriptions.json", "r") as f:
|
49 |
dataset_description_temp = json.load(f)
|
50 |
|
51 |
dataset_descriptions = dict()
|
|
|
|
|
|
|
52 |
|
53 |
for dataset in dataset_description_temp:
|
54 |
dataset_name = dataset.lower()
|
55 |
dataset_descriptions[dataset_name] = \
|
56 |
-
f"{
|
57 |
-
f"where the goal is to {dataset_description_temp[dataset]['description']}."
|
|
|
|
|
|
|
|
|
58 |
|
59 |
class Scaler:
|
60 |
def __init__(self, log=False):
|
@@ -215,7 +223,11 @@ class MolecularPropertyPredictionModel():
|
|
215 |
adapter_id = candidate_models[adapter_name]
|
216 |
print(f"loading {adapter_name} from {adapter_id}...")
|
217 |
self.base_model.load_adapter(adapter_id, adapter_name=adapter_name, token = os.environ.get("TOKEN"))
|
218 |
-
|
|
|
|
|
|
|
|
|
219 |
|
220 |
#self.base_model.to("cuda")
|
221 |
#print(self.base_model)
|
@@ -242,7 +254,7 @@ class MolecularPropertyPredictionModel():
|
|
242 |
|
243 |
#if adapter_name not in self.apapter_scaler_path:
|
244 |
# self.apapter_scaler_path[adapter_name] = hf_hub_download(adapter_id, filename="scaler.pkl", token = os.environ.get("TOKEN"))
|
245 |
-
if os.path.exists(self.apapter_scaler_path[adapter_name]):
|
246 |
self.scaler = pickle.load(open(self.apapter_scaler_path[adapter_name], "rb"))
|
247 |
else:
|
248 |
self.scaler = None
|
@@ -276,7 +288,7 @@ class MolecularPropertyPredictionModel():
|
|
276 |
if task_type == "regression": # TODO: check if the model is regression or classification
|
277 |
y_pred.append(outputs.logits.cpu().detach().numpy())
|
278 |
else:
|
279 |
-
y_pred.append((torch.sigmoid(outputs.logits)
|
280 |
|
281 |
y_pred = np.concatenate(y_pred, axis=0)
|
282 |
if task_type=="regression" and self.scaler is not None:
|
|
|
39 |
RDLogger.DisableLog('rdApp.*')
|
40 |
|
41 |
# we have a dictionary to store the task types of the models
|
42 |
+
#task_types = {
|
43 |
+
# "admet_bioavailability_ma": "classification",
|
44 |
+
# "admet_ppbr_az": "regression",
|
45 |
+
# "admet_half_life_obach": "regression",
|
46 |
+
#}
|
47 |
|
48 |
# read the dataset descriptions
|
49 |
with open("dataset_descriptions.json", "r") as f:
|
50 |
dataset_description_temp = json.load(f)
|
51 |
|
52 |
dataset_descriptions = dict()
|
53 |
+
dataset_property_names = dict()
|
54 |
+
dataset_task_types = dict()
|
55 |
+
dataset_property_names_to_dataset = dict()
|
56 |
|
57 |
for dataset in dataset_description_temp:
|
58 |
dataset_name = dataset.lower()
|
59 |
dataset_descriptions[dataset_name] = \
|
60 |
+
f"{dataset_description_temp[dataset]['task_name']} is a {dataset_description_temp[dataset]['task_type']} task, " + \
|
61 |
+
f"where the goal is to {dataset_description_temp[dataset]['description']}. \n" + \
|
62 |
+
f"More information can be found at {dataset_description_temp[dataset]['url']}."
|
63 |
+
dataset_property_names[dataset_name] = dataset_description_temp[dataset]['task_name']
|
64 |
+
dataset_property_names_to_dataset[dataset_description_temp[dataset]['task_name']] = dataset_name
|
65 |
+
dataset_task_types[dataset_name] = dataset_description_temp[dataset]['task_type']
|
66 |
|
67 |
class Scaler:
|
68 |
def __init__(self, log=False):
|
|
|
223 |
adapter_id = candidate_models[adapter_name]
|
224 |
print(f"loading {adapter_name} from {adapter_id}...")
|
225 |
self.base_model.load_adapter(adapter_id, adapter_name=adapter_name, token = os.environ.get("TOKEN"))
|
226 |
+
try:
|
227 |
+
self.apapter_scaler_path[adapter_name] = hf_hub_download(adapter_id, filename="scaler.pkl", token = os.environ.get("TOKEN"))
|
228 |
+
except:
|
229 |
+
self.apapter_scaler_path[adapter_name] = None
|
230 |
+
assert dataset_task_types[adapter_name] == "classification", f"{adapter_name} is not a regression task."
|
231 |
|
232 |
#self.base_model.to("cuda")
|
233 |
#print(self.base_model)
|
|
|
254 |
|
255 |
#if adapter_name not in self.apapter_scaler_path:
|
256 |
# self.apapter_scaler_path[adapter_name] = hf_hub_download(adapter_id, filename="scaler.pkl", token = os.environ.get("TOKEN"))
|
257 |
+
if self.apapter_scaler_path[adapter_name] and os.path.exists(self.apapter_scaler_path[adapter_name]):
|
258 |
self.scaler = pickle.load(open(self.apapter_scaler_path[adapter_name], "rb"))
|
259 |
else:
|
260 |
self.scaler = None
|
|
|
288 |
if task_type == "regression": # TODO: check if the model is regression or classification
|
289 |
y_pred.append(outputs.logits.cpu().detach().numpy())
|
290 |
else:
|
291 |
+
y_pred.append((torch.sigmoid(outputs.logits)).cpu().detach().numpy())
|
292 |
|
293 |
y_pred = np.concatenate(y_pred, axis=0)
|
294 |
if task_type=="regression" and self.scaler is not None:
|