Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,084 Bytes
50fe1a2 6bb1bdf 50fe1a2 6bb1bdf 50fe1a2 6bb1bdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import gradio as gr
from huggingface_hub import HfApi, get_collection, list_collections
from utils import MolecularPropertyPredictionModel, task_types, dataset_descriptions
import pandas as pd
import os
def get_models():
# this is the collection id for the molecular property prediction models
collection = get_collection("ChemFM/molecular-property-prediction-6710141ffc31f31a47d6fc0c")
models = dict()
for item in collection.items:
if item.item_type == "model":
item_name = item.item_id.split("/")[-1]
models[item_name] = item.item_id
assert item_name in task_types, f"{item_name} is not in the task_types"
assert item_name in dataset_descriptions, f"{item_name} is not in the dataset_descriptions"
return models
candidate_models = get_models()
properties = list(candidate_models.keys())
model = MolecularPropertyPredictionModel()
def get_description(property_name):
return dataset_descriptions[property_name]
def predict_single_label(smiles, property_name):
adapter_id = candidate_models[property_name]
info = model.swith_adapter(property_name, adapter_id)
running_status = None
if info == "keep":
running_status = "Adapter is the same as the current one"
#print("Adapter is the same as the current one")
elif info == "switched":
running_status = "Adapter is switched successfully"
#print("Adapter is switched successfully")
elif info == "error":
running_status = "Adapter is not found"
#print("Adapter is not found")
return "NA", running_status
else:
running_status = "Unknown error"
return "NA", running_status
#prediction = model.predict(smiles, property_name, adapter_id)
prediction = model.predict_single_smiles(smiles, task_types[property_name])
if prediction is None:
return "NA", "Invalid SMILES string"
# if the prediction is a float, round it to 3 decimal places
if isinstance(prediction, float):
prediction = round(prediction, 3)
return prediction, "Prediction is done"
def predict_file(file, property_name):
adapter_id = candidate_models[property_name]
info = model.swith_adapter(property_name, adapter_id)
running_status = None
if info == "keep":
running_status = "Adapter is the same as the current one"
#print("Adapter is the same as the current one")
elif info == "switched":
running_status = "Adapter is switched successfully"
#print("Adapter is switched successfully")
elif info == "error":
running_status = "Adapter is not found"
#print("Adapter is not found")
return None, None, file, running_status
else:
running_status = "Unknown error"
return None, None, file, running_status
df = pd.read_csv(file)
# we have already checked the file contains the "smiles" column
df = model.predict_file(df, task_types[property_name])
# we should save this file to the disk to be downloaded
# rename the file to have "_prediction" suffix
prediction_file = file.replace(".csv", "_prediction.csv") if file.endswith(".csv") else file.replace(".smi", "_prediction.csv")
print(file, prediction_file)
# save the file to the disk
df.to_csv(prediction_file, index=False)
return gr.update(visible=False), gr.DownloadButton(label="Download", value=prediction_file, visible=True), prediction_file, "Prediction is done"
def validate_file(file):
try:
if file.endswith(".csv"):
df = pd.read_csv(file)
if "smiles" not in df.columns:
# we should clear the file input
return "Invalid file content. The csv file must contain column named 'smiles'", \
None, gr.update(visible=False), gr.update(visible=False)
# check the length of the smiles
length = len(df["smiles"])
elif file.endswith(".smi"):
return "Invalid file extension", \
None, gr.update(visible=False), gr.update(visible=False)
else:
return "Invalid file extension", \
None, gr.update(visible=False), gr.update(visible=False)
except Exception as e:
return "Invalid file content.", \
None, gr.update(visible=False), gr.update(visible=False)
if length > 100:
return "The space does not support the file containing more than 100 SMILES", \
None, gr.update(visible=False), gr.update(visible=False)
return "Valid file", file, gr.update(visible=True), gr.update(visible=False)
def raise_error(status):
if status != "Valid file":
raise gr.Error(status)
return None
def clear_file(download_button):
# we might need to delete the prediction file and uploaded file
prediction_path = download_button
print(prediction_path)
if prediction_path and os.path.exists(prediction_path):
os.remove(prediction_path)
original_data_file_0 = prediction_path.replace("_prediction.csv", ".csv")
original_data_file_1 = prediction_path.replace("_prediction.csv", ".smi")
if os.path.exists(original_data_file_0):
os.remove(original_data_file_0)
if os.path.exists(original_data_file_1):
os.remove(original_data_file_1)
#if os.path.exists(file):
# os.remove(file)
#prediction_file = file.replace(".csv", "_prediction.csv") if file.endswith(".csv") else file.replace(".smi", "_prediction.csv")
#if os.path.exists(prediction_file):
# os.remove(prediction_file)
return gr.update(visible=False), gr.update(visible=False), None
def build_inference():
with gr.Blocks() as demo:
# first row - Dropdown input
#with gr.Row():
dropdown = gr.Dropdown(properties, label="Property", value=properties[0])
description_box = gr.Textbox(label="Property description", lines=5,
interactive=False,
value=dataset_descriptions[properties[0]])
# third row - Textbox input and prediction label
with gr.Row(equal_height=True):
with gr.Column():
textbox = gr.Textbox(label="Molecule SMILES", type="text", placeholder="Provide a SMILES string here",
lines=1)
predict_single_smiles_button = gr.Button("Predict", size='sm')
prediction = gr.Label("Prediction will appear here")
running_terminal_label = gr.Textbox(label="Running status", type="text", placeholder=None, lines=10, interactive=False)
input_file = gr.File(label="Molecule file",
file_count='single',
file_types=[".smi", ".csv"], height=300)
predict_file_button = gr.Button("Predict", size='sm', visible=False)
download_button = gr.DownloadButton("Download", size='sm', visible=False)
# dropdown change event
dropdown.change(get_description, inputs=dropdown, outputs=description_box)
# predict single button click event
predict_single_smiles_button.click(predict_single_label, inputs=[textbox, dropdown], outputs=[prediction, running_terminal_label])
# input file upload event
file_status = gr.State()
input_file.upload(fn=validate_file, inputs=input_file, outputs=[file_status, input_file, predict_file_button, download_button]).success(raise_error, inputs=file_status, outputs=file_status)
# input file clear event
input_file.clear(fn=clear_file, inputs=[download_button], outputs=[predict_file_button, download_button, input_file])
# predict file button click event
predict_file_button.click(predict_file, inputs=[input_file, dropdown], outputs=[predict_file_button, download_button, input_file, running_terminal_label])
return demo
demo = build_inference()
if __name__ == '__main__':
demo.launch() |