Spaces:
Running
on
Zero
Running
on
Zero
Update utils.py
Browse files
utils.py
CHANGED
@@ -191,7 +191,7 @@ class MolecularPropertyPredictionModel():
|
|
191 |
self.base_model = AutoModelForSequenceClassification.from_pretrained(
|
192 |
"ChemFM/ChemFM-3B",
|
193 |
config=config,
|
194 |
-
device_map="
|
195 |
trust_remote_code=True,
|
196 |
token = os.environ.get("TOKEN")
|
197 |
)
|
@@ -284,7 +284,10 @@ class MolecularPropertyPredictionModel():
|
|
284 |
for i, batch in tqdm(enumerate(test_loader), total=len(test_loader), desc="Evaluating"):
|
285 |
with torch.no_grad():
|
286 |
batch = {k: v.to(self.base_model.device) for k, v in batch.items()}
|
|
|
|
|
287 |
outputs = self.base_model(**batch)
|
|
|
288 |
if task_type == "regression": # TODO: check if the model is regression or classification
|
289 |
y_pred.append(outputs.logits.cpu().detach().numpy())
|
290 |
else:
|
|
|
191 |
self.base_model = AutoModelForSequenceClassification.from_pretrained(
|
192 |
"ChemFM/ChemFM-3B",
|
193 |
config=config,
|
194 |
+
device_map="cuda",
|
195 |
trust_remote_code=True,
|
196 |
token = os.environ.get("TOKEN")
|
197 |
)
|
|
|
284 |
for i, batch in tqdm(enumerate(test_loader), total=len(test_loader), desc="Evaluating"):
|
285 |
with torch.no_grad():
|
286 |
batch = {k: v.to(self.base_model.device) for k, v in batch.items()}
|
287 |
+
print(self.base_model.device)
|
288 |
+
print(batch)
|
289 |
outputs = self.base_model(**batch)
|
290 |
+
print(output)
|
291 |
if task_type == "regression": # TODO: check if the model is regression or classification
|
292 |
y_pred.append(outputs.logits.cpu().detach().numpy())
|
293 |
else:
|