feiyang-cai commited on
Commit
8c11f13
·
verified ·
1 Parent(s): f7c2cc6

Update utils.py

Browse files
Files changed (1) hide show
  1. utils.py +18 -18
utils.py CHANGED
@@ -212,32 +212,32 @@ class MolecularPropertyPredictionModel():
212
  if adapter_name == self.adapter_name:
213
  return "keep"
214
  # switch adapter
215
- try:
216
  #self.adapter_name = adapter_name
217
  #print(self.adapter_name, adapter_id)
218
  #self.lora_model = PeftModel.from_pretrained(self.base_model, adapter_id, token = os.environ.get("TOKEN"))
219
  #self.lora_model.to("cuda")
220
  #print(self.lora_model)
221
 
222
- self.base_model.set_adapter(adapter_name)
223
- self.base_model.eval()
224
 
225
- #if adapter_name not in self.apapter_scaler_path:
226
- # self.apapter_scaler_path[adapter_name] = hf_hub_download(adapter_id, filename="scaler.pkl", token = os.environ.get("TOKEN"))
227
- if os.path.exists(self.apapter_scaler_path[adapter_name]):
228
- self.scaler = pickle.load(open(self.apapter_scaler_path[adapter_name], "rb"))
229
- else:
230
- self.scaler = None
231
-
232
- self.adapter_name = adapter_name
233
-
234
- return "switched"
235
- except Exception as e:
236
- print(e)
237
- # handle error
238
- return "error"
239
 
240
- @spaces.GPU(duration=20)
241
  def predict(self, valid_df, task_type):
242
  test_dataset = Dataset.from_pandas(valid_df)
243
  # construct the dataloader
 
212
  if adapter_name == self.adapter_name:
213
  return "keep"
214
  # switch adapter
215
+ #try:
216
  #self.adapter_name = adapter_name
217
  #print(self.adapter_name, adapter_id)
218
  #self.lora_model = PeftModel.from_pretrained(self.base_model, adapter_id, token = os.environ.get("TOKEN"))
219
  #self.lora_model.to("cuda")
220
  #print(self.lora_model)
221
 
222
+ self.base_model.set_adapter(adapter_name)
223
+ self.base_model.eval()
224
 
225
+ #if adapter_name not in self.apapter_scaler_path:
226
+ # self.apapter_scaler_path[adapter_name] = hf_hub_download(adapter_id, filename="scaler.pkl", token = os.environ.get("TOKEN"))
227
+ if os.path.exists(self.apapter_scaler_path[adapter_name]):
228
+ self.scaler = pickle.load(open(self.apapter_scaler_path[adapter_name], "rb"))
229
+ else:
230
+ self.scaler = None
231
+
232
+ self.adapter_name = adapter_name
233
+
234
+ return "switched"
235
+ #except Exception as e:
236
+ # print(e)
237
+ # # handle error
238
+ # return "error"
239
 
240
+ @spaces.GPU(duration=10)
241
  def predict(self, valid_df, task_type):
242
  test_dataset = Dataset.from_pandas(valid_df)
243
  # construct the dataloader