Spaces:
Running
on
Zero
Running
on
Zero
Update utils.py
Browse files
utils.py
CHANGED
@@ -212,32 +212,32 @@ class MolecularPropertyPredictionModel():
|
|
212 |
if adapter_name == self.adapter_name:
|
213 |
return "keep"
|
214 |
# switch adapter
|
215 |
-
try:
|
216 |
#self.adapter_name = adapter_name
|
217 |
#print(self.adapter_name, adapter_id)
|
218 |
#self.lora_model = PeftModel.from_pretrained(self.base_model, adapter_id, token = os.environ.get("TOKEN"))
|
219 |
#self.lora_model.to("cuda")
|
220 |
#print(self.lora_model)
|
221 |
|
222 |
-
|
223 |
-
|
224 |
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
except Exception as e:
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
|
240 |
-
@spaces.GPU(duration=
|
241 |
def predict(self, valid_df, task_type):
|
242 |
test_dataset = Dataset.from_pandas(valid_df)
|
243 |
# construct the dataloader
|
|
|
212 |
if adapter_name == self.adapter_name:
|
213 |
return "keep"
|
214 |
# switch adapter
|
215 |
+
#try:
|
216 |
#self.adapter_name = adapter_name
|
217 |
#print(self.adapter_name, adapter_id)
|
218 |
#self.lora_model = PeftModel.from_pretrained(self.base_model, adapter_id, token = os.environ.get("TOKEN"))
|
219 |
#self.lora_model.to("cuda")
|
220 |
#print(self.lora_model)
|
221 |
|
222 |
+
self.base_model.set_adapter(adapter_name)
|
223 |
+
self.base_model.eval()
|
224 |
|
225 |
+
#if adapter_name not in self.apapter_scaler_path:
|
226 |
+
# self.apapter_scaler_path[adapter_name] = hf_hub_download(adapter_id, filename="scaler.pkl", token = os.environ.get("TOKEN"))
|
227 |
+
if os.path.exists(self.apapter_scaler_path[adapter_name]):
|
228 |
+
self.scaler = pickle.load(open(self.apapter_scaler_path[adapter_name], "rb"))
|
229 |
+
else:
|
230 |
+
self.scaler = None
|
231 |
+
|
232 |
+
self.adapter_name = adapter_name
|
233 |
+
|
234 |
+
return "switched"
|
235 |
+
#except Exception as e:
|
236 |
+
# print(e)
|
237 |
+
# # handle error
|
238 |
+
# return "error"
|
239 |
|
240 |
+
@spaces.GPU(duration=10)
|
241 |
def predict(self, valid_df, task_type):
|
242 |
test_dataset = Dataset.from_pandas(valid_df)
|
243 |
# construct the dataloader
|