Spaces:
Running
Running
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
# Sidebar for user input | |
st.sidebar.header("Model Configuration") | |
model_name = st.sidebar.text_input("Enter model name", "huggingface/transformers") | |
# Load model and tokenizer on demand | |
def load_model(model_name): | |
try: | |
# Load the model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
return tokenizer, model | |
except Exception as e: | |
st.error(f"Error loading model: {e}") | |
return None, None | |
# Load the model and tokenizer | |
tokenizer, model = load_model(model_name) | |
# Input text box in the main panel | |
st.title("Text Classification with Hugging Face Models") | |
user_input = st.text_area("Enter text for classification:") | |
# Make prediction if user input is provided | |
if user_input and model and tokenizer: | |
inputs = tokenizer(user_input, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# Display results (e.g., classification logits) | |
logits = outputs.logits | |
predicted_class = torch.argmax(logits, dim=-1).item() | |
st.write(f"Predicted Class: {predicted_class}") | |
st.write(f"Logits: {logits}") | |
else: | |
st.info("Please enter some text to classify.") | |