Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,52 @@
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
from bs4 import BeautifulSoup
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
try:
|
16 |
response = requests.get(url)
|
|
|
17 |
if response.status_code == 200:
|
18 |
soup = BeautifulSoup(response.text, 'html.parser')
|
19 |
title = soup.title.string if soup.title else 'No title found'
|
@@ -23,17 +56,58 @@ def fetch_page_title(url):
|
|
23 |
except Exception as e:
|
24 |
return f"An error occurred: {e}"
|
25 |
|
|
|
26 |
def main():
|
27 |
-
"""
|
28 |
-
Main function to run the Streamlit application.
|
29 |
-
"""
|
30 |
st.title("OSINT Tool")
|
31 |
-
|
|
|
|
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
if url:
|
35 |
title = fetch_page_title(url)
|
36 |
st.write(f"Title: {title}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
if __name__ == "__main__":
|
39 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
from bs4 import BeautifulSoup
|
4 |
+
import pandas as pd
|
5 |
+
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments
|
6 |
+
from datasets import load_dataset, Dataset
|
7 |
|
8 |
+
# OSINT functions
|
9 |
+
def get_github_stars_forks(owner, repo):
|
10 |
+
url = f"https://api.github.com/repos/{owner}/{repo}"
|
11 |
+
response = requests.get(url)
|
12 |
+
data = response.json()
|
13 |
+
return data['stargazers_count'], data['forks_count']
|
14 |
+
|
15 |
+
def get_github_issues(owner, repo):
|
16 |
+
url = f"https://api.github.com/repos/{owner}/{repo}/issues"
|
17 |
+
response = requests.get(url)
|
18 |
+
issues = response.json()
|
19 |
+
return len(issues)
|
20 |
+
|
21 |
+
def get_github_pull_requests(owner, repo):
|
22 |
+
url = f"https://api.github.com/repos/{owner}/{repo}/pulls"
|
23 |
+
response = requests.get(url)
|
24 |
+
pulls = response.json()
|
25 |
+
return len(pulls)
|
26 |
|
27 |
+
def get_github_license(owner, repo):
|
28 |
+
url = f"https://api.github.com/repos/{owner}/{repo}/license"
|
29 |
+
response = requests.get(url)
|
30 |
+
data = response.json()
|
31 |
+
return data['license']['name']
|
32 |
|
33 |
+
def get_last_commit(owner, repo):
|
34 |
+
url = f"https://api.github.com/repos/{owner}/{repo}/commits"
|
35 |
+
response = requests.get(url)
|
36 |
+
commits = response.json()
|
37 |
+
return commits[0]['commit']['committer']['date']
|
38 |
+
|
39 |
+
def get_github_workflow_status(owner, repo):
|
40 |
+
url = f"https://api.github.com/repos/{owner}/{repo}/actions/runs"
|
41 |
+
response = requests.get(url)
|
42 |
+
runs = response.json()
|
43 |
+
return runs['workflow_runs'][0]['status'] if runs['workflow_runs'] else "No workflows found"
|
44 |
+
|
45 |
+
# Function to fetch page title from a URL
|
46 |
+
def fetch_page_title(url):
|
47 |
try:
|
48 |
response = requests.get(url)
|
49 |
+
st.write(f"Fetching URL: {url} - Status Code: {response.status_code}")
|
50 |
if response.status_code == 200:
|
51 |
soup = BeautifulSoup(response.text, 'html.parser')
|
52 |
title = soup.title.string if soup.title else 'No title found'
|
|
|
56 |
except Exception as e:
|
57 |
return f"An error occurred: {e}"
|
58 |
|
59 |
+
# Main Streamlit app
|
60 |
def main():
|
|
|
|
|
|
|
61 |
st.title("OSINT Tool")
|
62 |
+
|
63 |
+
st.write("### GitHub Repository OSINT Analysis")
|
64 |
+
st.write("Enter the GitHub repository owner and name:")
|
65 |
|
66 |
+
owner = st.text_input("Repository Owner")
|
67 |
+
repo = st.text_input("Repository Name")
|
68 |
+
|
69 |
+
if owner and repo:
|
70 |
+
stars, forks = get_github_stars_forks(owner, repo)
|
71 |
+
open_issues = get_github_issues(owner, repo)
|
72 |
+
open_pulls = get_github_pull_requests(owner, repo)
|
73 |
+
license_type = get_github_license(owner, repo)
|
74 |
+
last_commit = get_last_commit(owner, repo)
|
75 |
+
workflow_status = get_github_workflow_status(owner, repo)
|
76 |
+
|
77 |
+
st.write(f"Stars: {stars}, Forks: {forks}")
|
78 |
+
st.write(f"Open Issues: {open_issues}, Open Pull Requests: {open_pulls}")
|
79 |
+
st.write(f"License: {license_type}")
|
80 |
+
st.write(f"Last Commit: {last_commit}")
|
81 |
+
st.write(f"Workflow Status: {workflow_status}")
|
82 |
+
|
83 |
+
st.write("### URL Title Fetcher")
|
84 |
+
url = st.text_input("Enter a URL to fetch its title:")
|
85 |
if url:
|
86 |
title = fetch_page_title(url)
|
87 |
st.write(f"Title: {title}")
|
88 |
+
|
89 |
+
st.write("### Dataset Upload & Model Fine-Tuning")
|
90 |
+
dataset_file = st.file_uploader("Upload a CSV file for fine-tuning", type=["csv"])
|
91 |
+
if dataset_file:
|
92 |
+
df = pd.read_csv(dataset_file)
|
93 |
+
st.dataframe(df.head())
|
94 |
+
|
95 |
+
st.write("Select a model for fine-tuning:")
|
96 |
+
model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])
|
97 |
+
if st.button("Fine-tune Model"):
|
98 |
+
if dataset_file:
|
99 |
+
dataset = Dataset.from_pandas(df)
|
100 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
101 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
102 |
+
|
103 |
+
def tokenize_function(examples):
|
104 |
+
return tokenizer(examples['text'], padding="max_length", truncation=True)
|
105 |
+
|
106 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
107 |
+
training_args = TrainingArguments(output_dir="./results", num_train_epochs=1, per_device_train_batch_size=8)
|
108 |
+
trainer = Trainer(model=model, args=training_args, train_dataset=tokenized_datasets)
|
109 |
+
trainer.train()
|
110 |
+
st.write("Model fine-tuned successfully!")
|
111 |
|
112 |
if __name__ == "__main__":
|
113 |
main()
|