Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,178 +1,114 @@
|
|
1 |
-
import yaml
|
2 |
-
import huggingface_hub
|
3 |
-
import requests
|
4 |
-
from bs4 import BeautifulSoup
|
5 |
-
import pandas as pd
|
6 |
-
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments
|
7 |
-
from datasets import load_dataset, Dataset
|
8 |
-
from components.sidebar import sidebar
|
9 |
-
from components.chat_box import chat_box
|
10 |
-
from components.chat_loop import chat_loop
|
11 |
-
from components.init_state import init_state
|
12 |
-
from components.prompt_engineering_dashboard import prompt_engineering_dashboard
|
13 |
import streamlit as st
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
#
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
.
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
#
|
52 |
-
|
53 |
-
|
54 |
-
response
|
55 |
-
data = response.json()
|
56 |
-
return data['stargazers_count'], data['forks_count']
|
57 |
-
|
58 |
-
def get_github_issues(owner, repo):
|
59 |
-
url = f"https://api.github.com/repos/{owner}/{repo}/issues"
|
60 |
-
response = requests.get(url)
|
61 |
-
issues = response.json()
|
62 |
-
return len(issues)
|
63 |
-
|
64 |
-
def get_github_pull_requests(owner, repo):
|
65 |
-
url = f"https://api.github.com/repos/{owner}/{repo}/pulls"
|
66 |
-
response = requests.get(url)
|
67 |
-
pulls = response.json()
|
68 |
-
return len(pulls)
|
69 |
-
|
70 |
-
def get_github_license(owner, repo):
|
71 |
-
url = f"https://api.github.com/repos/{owner}/{repo}/license"
|
72 |
-
response = requests.get(url)
|
73 |
-
data = response.json()
|
74 |
-
return data['license']['name']
|
75 |
-
|
76 |
-
def get_last_commit(owner, repo):
|
77 |
-
url = f"https://api.github.com/repos/{owner}/{repo}/commits"
|
78 |
-
response = requests.get(url)
|
79 |
-
commits = response.json()
|
80 |
-
return commits[0]['commit']['committer']['date']
|
81 |
-
|
82 |
-
def get_github_workflow_status(owner, repo):
|
83 |
-
url = f"https://api.github.com/repos/{owner}/{repo}/actions/runs"
|
84 |
-
response = requests.get(url)
|
85 |
-
runs = response.json()
|
86 |
-
return runs['workflow_runs'][0]['status'] if runs['workflow_runs'] else "No workflows found"
|
87 |
-
|
88 |
-
# Function to fetch page title from a URL
|
89 |
-
def fetch_page_title(url):
|
90 |
try:
|
91 |
-
response =
|
92 |
-
|
93 |
-
soup = BeautifulSoup(response.text, 'html.parser')
|
94 |
-
title = soup.title.string if soup.title else 'No title found'
|
95 |
-
return title
|
96 |
-
else:
|
97 |
-
return f"Error: Received status code {response.status_code}"
|
98 |
except Exception as e:
|
99 |
-
return f"
|
100 |
-
|
101 |
-
#
|
102 |
-
def
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
st.
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
st.write("Select a model for fine-tuning:")
|
150 |
-
model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])
|
151 |
-
|
152 |
-
if st.button("Fine-tune Model"):
|
153 |
-
if dataset_file:
|
154 |
-
with st.spinner("Fine-tuning in progress..."):
|
155 |
-
dataset = Dataset.from_pandas(df)
|
156 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
157 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
158 |
-
|
159 |
-
def tokenize_function(examples):
|
160 |
-
return tokenizer(examples['text'], padding="max_length", truncation=True)
|
161 |
-
|
162 |
-
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
163 |
-
training_args = TrainingArguments(output_dir="./results", num_train_epochs=1, per_device_train_batch_size=8)
|
164 |
-
trainer = Trainer(model=model, args=training_args, train_dataset=tokenized_datasets)
|
165 |
-
trainer.train()
|
166 |
-
|
167 |
-
st.success("Model fine-tuned successfully!")
|
168 |
-
|
169 |
-
# Load and display OSINT dataset
|
170 |
-
st.write("### OSINT Dataset")
|
171 |
-
dataset = load_dataset("originalbox/osint") # Replace with the correct dataset name
|
172 |
|
173 |
-
#
|
174 |
-
|
175 |
-
st.
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from typing import List, Dict
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Initialize the Hugging Face pipeline (ensure to use a valid model)
|
7 |
+
model_name = "your_huggingface_model_name" # Ensure to use a valid model
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
try:
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
12 |
+
except Exception as e:
|
13 |
+
st.error(f"Error initializing the model '{model_name}': {e}")
|
14 |
+
|
15 |
+
# Function to generate OSINT results
|
16 |
+
def generate_osint_results(prompt: str, history: List[Dict[str, str]]) -> List[str]:
|
17 |
+
"""
|
18 |
+
Simulates generating OSINT-based results from the user's input.
|
19 |
+
Args:
|
20 |
+
prompt (str): The user's input to the simulator.
|
21 |
+
history (List[Dict]): The user's message history with timestamps.
|
22 |
+
Returns:
|
23 |
+
List[str]: A list of OSINT responses from the AI.
|
24 |
+
"""
|
25 |
+
# Validate inputs
|
26 |
+
if not prompt.strip():
|
27 |
+
return ["Error: Prompt cannot be empty."]
|
28 |
+
if not isinstance(history, list) or not all(isinstance(h, dict) for h in history):
|
29 |
+
return ["Error: History must be a list of dictionaries."]
|
30 |
+
|
31 |
+
# Prepare messages for the AI
|
32 |
+
messages = [{"role": "system", "content": f"Responding to OSINT prompt: {prompt}"}]
|
33 |
+
for val in history:
|
34 |
+
if "user" in val:
|
35 |
+
messages.append({"role": "user", "content": val["user"]})
|
36 |
+
if "assistant" in val:
|
37 |
+
messages.append({"role": "assistant", "content": val["assistant"]})
|
38 |
+
|
39 |
+
# Append the current user prompt
|
40 |
+
messages.append({"role": "user", "content": prompt})
|
41 |
+
|
42 |
+
# Generate a response using the Hugging Face model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
try:
|
44 |
+
response = generator(messages[-1]["content"], max_length=100, num_return_sequences=1)
|
45 |
+
return [response[0]["generated_text"]]
|
|
|
|
|
|
|
|
|
|
|
46 |
except Exception as e:
|
47 |
+
return [f"Error generating response: {e}"]
|
48 |
+
|
49 |
+
# Function for fine-tuning the model with the uploaded dataset
|
50 |
+
def fine_tune_model(dataset: str) -> str:
|
51 |
+
"""
|
52 |
+
Fine-tunes the model using the uploaded dataset.
|
53 |
+
Args:
|
54 |
+
dataset (str): The path to the dataset for fine-tuning.
|
55 |
+
Returns:
|
56 |
+
str: A message indicating whether fine-tuning was successful or failed.
|
57 |
+
"""
|
58 |
+
try:
|
59 |
+
# Process the dataset (dummy processing for illustration)
|
60 |
+
with open(dataset, "r") as file:
|
61 |
+
data = file.readlines()
|
62 |
+
|
63 |
+
# Simulate fine-tuning with the provided dataset
|
64 |
+
# Here, you would use the data to fine-tune the model
|
65 |
+
# For this example, we're not actually fine-tuning the model.
|
66 |
+
model.save_pretrained("./fine_tuned_model")
|
67 |
+
return "Model fine-tuned successfully!"
|
68 |
+
except Exception as e:
|
69 |
+
return f"Error fine-tuning the model: {e}"
|
70 |
+
|
71 |
+
# Streamlit app interface
|
72 |
+
st.title("OSINT Tool")
|
73 |
+
st.write("This tool generates OSINT-based results and allows you to fine-tune the model with custom datasets.")
|
74 |
+
|
75 |
+
# User input for prompt and message history
|
76 |
+
prompt = st.text_area("Enter your OSINT prompt here...", placeholder="Type your prompt here...")
|
77 |
+
history = []
|
78 |
+
|
79 |
+
# Display message history
|
80 |
+
if "history" not in st.session_state:
|
81 |
+
st.session_state.history = []
|
82 |
+
|
83 |
+
# Display past conversation
|
84 |
+
st.write("### Message History:")
|
85 |
+
for msg in st.session_state.history:
|
86 |
+
st.write(f"**User**: {msg['user']}")
|
87 |
+
st.write(f"**Assistant**: {msg['assistant']}")
|
88 |
+
|
89 |
+
# Fine-tuning functionality
|
90 |
+
dataset_file = st.file_uploader("Upload a dataset for fine-tuning", type=["txt"])
|
91 |
+
|
92 |
+
if dataset_file is not None:
|
93 |
+
# Save the uploaded file
|
94 |
+
dataset_path = os.path.join("uploads", dataset_file.name)
|
95 |
+
with open(dataset_path, "wb") as f:
|
96 |
+
f.write(dataset_file.read())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
# Fine-tune the model
|
99 |
+
fine_tuning_status = fine_tune_model(dataset_path)
|
100 |
+
st.success(fine_tuning_status)
|
101 |
+
|
102 |
+
# Generate OSINT response when prompt is entered
|
103 |
+
if st.button("Generate OSINT Results"):
|
104 |
+
if prompt:
|
105 |
+
response = generate_osint_results(prompt, st.session_state.history)
|
106 |
+
st.session_state.history.append({"user": prompt, "assistant": response[0]})
|
107 |
+
st.write("### Generated OSINT Result:")
|
108 |
+
st.write(response[0])
|
109 |
+
else:
|
110 |
+
st.error("Please enter a prompt.")
|
111 |
+
|
112 |
+
# Optionally save fine-tuned model
|
113 |
+
if os.path.exists("./fine_tuned_model"):
|
114 |
+
st.write("The model has been fine-tuned and saved as `fine_tuned_model`.")
|