Canstralian commited on
Commit
62d3546
·
verified ·
1 Parent(s): 61560c5

Create src/fine_tune_helpers.py

Browse files
Files changed (1) hide show
  1. src/fine_tune_helpers.py +32 -35
src/fine_tune_helpers.py CHANGED
@@ -1,39 +1,36 @@
1
  import pandas as pd
2
- from datasets import Dataset
3
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
4
- import torch
5
 
6
- def fine_tune_model(uploaded_file):
7
- df = pd.read_csv(uploaded_file)
8
- st.subheader("Dataset Preview")
9
- st.write(df.head())
 
 
 
 
 
 
 
10
 
11
- # Convert CSV to Hugging Face dataset format
12
- dataset = Dataset.from_pandas(df)
13
-
14
- model_name = st.selectbox("Select model for fine-tuning", ["distilbert-base-uncased"])
15
-
16
- if st.button("Fine-tune Model"):
17
- if model_name:
18
- try:
19
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
20
- tokenizer = AutoTokenizer.from_pretrained(model_name)
 
 
 
21
 
22
- def preprocess_function(examples):
23
- return tokenizer(examples['text'], truncation=True, padding=True)
24
-
25
- tokenized_datasets = dataset.map(preprocess_function, batched=True)
26
-
27
- # Fine-tuning logic (example)
28
- train_args = {
29
- "output_dir": "./results",
30
- "num_train_epochs": 3,
31
- "per_device_train_batch_size": 16,
32
- "logging_dir": "./logs",
33
- }
34
-
35
- st.success("Fine-tuning started (demo)!") # Fine-tuning process goes here
36
- except Exception as e:
37
- st.error(f"Error during fine-tuning: {e}")
38
- else:
39
- st.warning("Please select a model for fine-tuning.")
 
1
  import pandas as pd
2
+ import logging
 
 
3
 
4
+ def preprocess_data(dataset_path):
5
+ try:
6
+ data = pd.read_csv(dataset_path)
7
+ logging.info("Data loaded successfully")
8
+
9
+ # Example preprocessing: clean data, handle missing values, etc.
10
+ data.dropna(inplace=True)
11
+
12
+ return data
13
+ except Exception as e:
14
+ logging.error(f"Error during data preprocessing: {e}")
15
 
16
+ def train_model(data, config):
17
+ try:
18
+ # Assuming some model training logic
19
+ model = "YourModel" # Placeholder
20
+ logging.info("Model training started")
21
+
22
+ # Configuration-based training
23
+ # Use hyperparameters from config
24
+ learning_rate = config.getfloat("model", "learning_rate")
25
+
26
+ return model
27
+ except Exception as e:
28
+ logging.error(f"Error during model training: {e}")
29
 
30
+ def save_model(model):
31
+ try:
32
+ # Save the fine-tuned model
33
+ model.save("model_path")
34
+ logging.info("Model saved successfully")
35
+ except Exception as e:
36
+ logging.error(f"Error saving model: {e}")