Spaces:
Running
Running
Create src/fine_tune_helpers.py
Browse files- src/fine_tune_helpers.py +32 -35
src/fine_tune_helpers.py
CHANGED
@@ -1,39 +1,36 @@
|
|
1 |
import pandas as pd
|
2 |
-
|
3 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
4 |
-
import torch
|
5 |
|
6 |
-
def
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
"output_dir": "./results",
|
30 |
-
"num_train_epochs": 3,
|
31 |
-
"per_device_train_batch_size": 16,
|
32 |
-
"logging_dir": "./logs",
|
33 |
-
}
|
34 |
-
|
35 |
-
st.success("Fine-tuning started (demo)!") # Fine-tuning process goes here
|
36 |
-
except Exception as e:
|
37 |
-
st.error(f"Error during fine-tuning: {e}")
|
38 |
-
else:
|
39 |
-
st.warning("Please select a model for fine-tuning.")
|
|
|
1 |
import pandas as pd
|
2 |
+
import logging
|
|
|
|
|
3 |
|
4 |
+
def preprocess_data(dataset_path):
|
5 |
+
try:
|
6 |
+
data = pd.read_csv(dataset_path)
|
7 |
+
logging.info("Data loaded successfully")
|
8 |
+
|
9 |
+
# Example preprocessing: clean data, handle missing values, etc.
|
10 |
+
data.dropna(inplace=True)
|
11 |
+
|
12 |
+
return data
|
13 |
+
except Exception as e:
|
14 |
+
logging.error(f"Error during data preprocessing: {e}")
|
15 |
|
16 |
+
def train_model(data, config):
|
17 |
+
try:
|
18 |
+
# Assuming some model training logic
|
19 |
+
model = "YourModel" # Placeholder
|
20 |
+
logging.info("Model training started")
|
21 |
+
|
22 |
+
# Configuration-based training
|
23 |
+
# Use hyperparameters from config
|
24 |
+
learning_rate = config.getfloat("model", "learning_rate")
|
25 |
+
|
26 |
+
return model
|
27 |
+
except Exception as e:
|
28 |
+
logging.error(f"Error during model training: {e}")
|
29 |
|
30 |
+
def save_model(model):
|
31 |
+
try:
|
32 |
+
# Save the fine-tuned model
|
33 |
+
model.save("model_path")
|
34 |
+
logging.info("Model saved successfully")
|
35 |
+
except Exception as e:
|
36 |
+
logging.error(f"Error saving model: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|