Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,176 +1,119 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
-
|
4 |
-
AutoModelForSequenceClassification,
|
5 |
-
AutoModelForSeq2SeqLM,
|
6 |
-
)
|
7 |
import torch
|
8 |
-
import
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
if "t5" in model_name or "seq2seq" in model_name:
|
47 |
-
# Load a sequence-to-sequence model
|
48 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
49 |
else:
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
except Exception as e:
|
122 |
-
st.error(f"Error processing file: {e}")
|
123 |
-
return None
|
124 |
-
|
125 |
-
|
126 |
-
# Main function to define the Streamlit app
|
127 |
-
def main():
|
128 |
-
st.title("AI Model Inference Dashboard")
|
129 |
-
st.markdown(
|
130 |
-
"""
|
131 |
-
This dashboard allows you to interact with different AI models for inference tasks,
|
132 |
-
such as generating shell commands or performing text classification.
|
133 |
-
"""
|
134 |
-
)
|
135 |
-
|
136 |
-
# Model selection
|
137 |
-
model_choice = select_model()
|
138 |
-
model_name = MODEL_MAPPING.get(model_choice)
|
139 |
-
tokenizer, model = load_model_and_tokenizer(model_name)
|
140 |
-
|
141 |
-
# Input text area or file upload
|
142 |
-
input_choice = st.radio("Choose Input Method", ("Text Input", "Upload File"))
|
143 |
-
|
144 |
-
if input_choice == "Text Input":
|
145 |
-
user_input = st.text_area("Enter your text input:", placeholder="Type your text here...")
|
146 |
-
|
147 |
-
# Handle prediction after submit
|
148 |
-
submit_button = st.button("Submit")
|
149 |
-
|
150 |
-
if submit_button and user_input:
|
151 |
-
st.write("### Prediction Results:")
|
152 |
-
result = predict_with_model(user_input, model, tokenizer, model_choice)
|
153 |
-
for key, value in result.items():
|
154 |
-
st.write(f"**{key}:** {value}")
|
155 |
-
|
156 |
-
elif input_choice == "Upload File":
|
157 |
-
uploaded_file = st.file_uploader("Choose a text or CSV file", type=["txt", "csv"])
|
158 |
-
|
159 |
-
# Handle prediction after submit
|
160 |
-
submit_button = st.button("Submit")
|
161 |
-
|
162 |
-
if submit_button and uploaded_file:
|
163 |
-
file_content = process_uploaded_file(uploaded_file)
|
164 |
-
if file_content:
|
165 |
-
st.write("### File Content:")
|
166 |
-
st.write(file_content)
|
167 |
-
result = predict_with_model(file_content, model, tokenizer, model_choice)
|
168 |
-
st.write("### Prediction Results:")
|
169 |
-
for key, value in result.items():
|
170 |
-
st.write(f"**{key}:** {value}")
|
171 |
else:
|
172 |
-
st.
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
import requests
|
3 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
|
|
|
|
|
4 |
import torch
|
5 |
+
import pandas as pd
|
6 |
+
from datasets import Dataset
|
7 |
+
|
8 |
+
# Title and description
|
9 |
+
st.title("OSINT Tool 🏢")
|
10 |
+
st.markdown("""
|
11 |
+
This tool performs **Open Source Intelligence (OSINT)** analysis on GitHub repositories and fetches titles from URLs.
|
12 |
+
It also allows uploading datasets (CSV format) for fine-tuning models like **DistilBERT**.
|
13 |
+
""")
|
14 |
+
|
15 |
+
# Sidebar for navigation
|
16 |
+
st.sidebar.title("Navigation")
|
17 |
+
app_mode = st.sidebar.radio("Choose the mode", ["GitHub Repository Analysis", "URL Title Fetcher", "Dataset Upload & Fine-Tuning"])
|
18 |
+
|
19 |
+
# GitHub Repository Analysis
|
20 |
+
if app_mode == "GitHub Repository Analysis":
|
21 |
+
st.header("GitHub Repository Analysis")
|
22 |
+
repo_owner = st.text_input("Enter GitHub Repository Owner", "huggingface")
|
23 |
+
repo_name = st.text_input("Enter GitHub Repository Name", "transformers")
|
24 |
+
|
25 |
+
if st.button("Analyze Repository"):
|
26 |
+
if repo_owner and repo_name:
|
27 |
+
try:
|
28 |
+
response = requests.get(f"https://api.github.com/repos/{repo_owner}/{repo_name}")
|
29 |
+
data = response.json()
|
30 |
+
|
31 |
+
if response.status_code == 200:
|
32 |
+
st.subheader("Repository Details")
|
33 |
+
st.write(f"**Name**: {data['name']}")
|
34 |
+
st.write(f"**Owner**: {data['owner']['login']}")
|
35 |
+
st.write(f"**Stars**: {data['stargazers_count']}")
|
36 |
+
st.write(f"**Forks**: {data['forks_count']}")
|
37 |
+
st.write(f"**Language**: {data['language']}")
|
38 |
+
st.write(f"**Description**: {data['description']}")
|
39 |
+
else:
|
40 |
+
st.error(f"Error: {data.get('message', 'Something went wrong with the request')}")
|
41 |
+
except Exception as e:
|
42 |
+
st.error(f"Error occurred: {e}")
|
|
|
|
|
|
|
43 |
else:
|
44 |
+
st.warning("Please enter both repository owner and name.")
|
45 |
+
|
46 |
+
# URL Title Fetcher
|
47 |
+
elif app_mode == "URL Title Fetcher":
|
48 |
+
st.header("URL Title Fetcher")
|
49 |
+
url = st.text_input("Enter URL", "https://www.huggingface.co")
|
50 |
+
|
51 |
+
if st.button("Fetch Title"):
|
52 |
+
if url:
|
53 |
+
try:
|
54 |
+
response = requests.get(url)
|
55 |
+
if response.status_code == 200:
|
56 |
+
# Try to extract the title from the HTML
|
57 |
+
match = re.search('<title>(.*?)</title>', response.text)
|
58 |
+
if match:
|
59 |
+
title = match.group(1)
|
60 |
+
st.write(f"**Page Title**: {title}")
|
61 |
+
else:
|
62 |
+
st.warning("Title tag not found in the page")
|
63 |
+
else:
|
64 |
+
st.error(f"Failed to retrieve the page. Status code: {response.status_code}")
|
65 |
+
except Exception as e:
|
66 |
+
st.error(f"Error occurred: {e}")
|
67 |
+
else:
|
68 |
+
st.warning("Please enter a valid URL.")
|
69 |
+
|
70 |
+
# Dataset Upload & Fine-Tuning
|
71 |
+
elif app_mode == "Dataset Upload & Fine-Tuning":
|
72 |
+
st.header("Dataset Upload & Fine-Tuning")
|
73 |
+
|
74 |
+
uploaded_file = st.file_uploader("Upload a CSV file for fine-tuning", type="csv")
|
75 |
+
|
76 |
+
if uploaded_file is not None:
|
77 |
+
# Load the CSV into a pandas DataFrame
|
78 |
+
df = pd.read_csv(uploaded_file)
|
79 |
+
|
80 |
+
# Display dataset preview
|
81 |
+
st.subheader("Dataset Preview")
|
82 |
+
st.write(df.head())
|
83 |
+
|
84 |
+
# Convert CSV to Hugging Face dataset format
|
85 |
+
dataset = Dataset.from_pandas(df)
|
86 |
+
|
87 |
+
model_name = st.selectbox("Select model for fine-tuning", ["distilbert-base-uncased"])
|
88 |
+
|
89 |
+
if st.button("Fine-tune Model"):
|
90 |
+
if model_name:
|
91 |
+
try:
|
92 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
93 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
94 |
+
|
95 |
+
# Prepare the dataset
|
96 |
+
def preprocess_function(examples):
|
97 |
+
return tokenizer(examples['text'], truncation=True, padding=True)
|
98 |
+
|
99 |
+
tokenized_datasets = dataset.map(preprocess_function, batched=True)
|
100 |
+
|
101 |
+
# Training loop (example)
|
102 |
+
train_args = {
|
103 |
+
"output_dir": "./results",
|
104 |
+
"num_train_epochs": 3,
|
105 |
+
"per_device_train_batch_size": 16,
|
106 |
+
"logging_dir": "./logs",
|
107 |
+
}
|
108 |
+
|
109 |
+
# Fine-tuning logic (for demonstration purposes, actual fine-tuning will need Hugging Face Trainer)
|
110 |
+
# model.train()
|
111 |
+
|
112 |
+
st.success("Fine-tuning started (demo)!")
|
113 |
+
except Exception as e:
|
114 |
+
st.error(f"Error during fine-tuning: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
else:
|
116 |
+
st.warning("Please select a model for fine-tuning.")
|
117 |
+
|
118 |
+
else:
|
119 |
+
st.warning("Please upload a dataset.")
|
|