Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -20,14 +20,13 @@ from huggingface_hub import login
|
|
20 |
|
21 |
login(token=hf_token)
|
22 |
|
23 |
-
|
24 |
# Load config.yaml
|
25 |
with open("config.yaml", "r") as file:
|
26 |
config = yaml.safe_load(file)
|
27 |
|
28 |
# Streamlit page configuration
|
29 |
st.set_page_config(
|
30 |
-
page_title="
|
31 |
page_icon="𓃮",
|
32 |
)
|
33 |
|
@@ -41,10 +40,9 @@ html_title = '''
|
|
41 |
color: #00008B; /* Deep blue color */
|
42 |
font-size: 36px; /* Adjust font size as desired */
|
43 |
font-weight: bold; /* Add boldness (optional) */
|
44 |
-
/* Add other font styling here (optional) */
|
45 |
}
|
46 |
</style>
|
47 |
-
<h1 class="stTitle">
|
48 |
'''
|
49 |
|
50 |
# Display HTML title
|
@@ -91,7 +89,6 @@ def get_github_workflow_status(owner, repo):
|
|
91 |
def fetch_page_title(url):
|
92 |
try:
|
93 |
response = requests.get(url)
|
94 |
-
st.write(f"Fetching URL: {url} - Status Code: {response.status_code}")
|
95 |
if response.status_code == 200:
|
96 |
soup = BeautifulSoup(response.text, 'html.parser')
|
97 |
title = soup.title.string if soup.title else 'No title found'
|
@@ -142,27 +139,32 @@ def main():
|
|
142 |
# Dataset Upload & Model Fine-Tuning Section
|
143 |
st.write("### Dataset Upload & Model Fine-Tuning")
|
144 |
dataset_file = st.file_uploader("Upload a CSV file for fine-tuning", type=["csv"])
|
|
|
145 |
if dataset_file:
|
146 |
df = pd.read_csv(dataset_file)
|
|
|
147 |
st.dataframe(df.head())
|
148 |
|
|
|
149 |
st.write("Select a model for fine-tuning:")
|
150 |
model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])
|
151 |
|
152 |
if st.button("Fine-tune Model"):
|
153 |
if dataset_file:
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
166 |
|
167 |
# Load and display OSINT dataset
|
168 |
st.write("### OSINT Dataset")
|
|
|
20 |
|
21 |
login(token=hf_token)
|
22 |
|
|
|
23 |
# Load config.yaml
|
24 |
with open("config.yaml", "r") as file:
|
25 |
config = yaml.safe_load(file)
|
26 |
|
27 |
# Streamlit page configuration
|
28 |
st.set_page_config(
|
29 |
+
page_title="NCTC OSINT AGENT - Fine-tuning Models",
|
30 |
page_icon="𓃮",
|
31 |
)
|
32 |
|
|
|
40 |
color: #00008B; /* Deep blue color */
|
41 |
font-size: 36px; /* Adjust font size as desired */
|
42 |
font-weight: bold; /* Add boldness (optional) */
|
|
|
43 |
}
|
44 |
</style>
|
45 |
+
<h1 class="stTitle">NCTC OSINT AGENT - Fine-tuning AI Models</h1>
|
46 |
'''
|
47 |
|
48 |
# Display HTML title
|
|
|
89 |
def fetch_page_title(url):
|
90 |
try:
|
91 |
response = requests.get(url)
|
|
|
92 |
if response.status_code == 200:
|
93 |
soup = BeautifulSoup(response.text, 'html.parser')
|
94 |
title = soup.title.string if soup.title else 'No title found'
|
|
|
139 |
# Dataset Upload & Model Fine-Tuning Section
|
140 |
st.write("### Dataset Upload & Model Fine-Tuning")
|
141 |
dataset_file = st.file_uploader("Upload a CSV file for fine-tuning", type=["csv"])
|
142 |
+
|
143 |
if dataset_file:
|
144 |
df = pd.read_csv(dataset_file)
|
145 |
+
st.write("Preview of the uploaded dataset:")
|
146 |
st.dataframe(df.head())
|
147 |
|
148 |
+
# Select model for fine-tuning
|
149 |
st.write("Select a model for fine-tuning:")
|
150 |
model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])
|
151 |
|
152 |
if st.button("Fine-tune Model"):
|
153 |
if dataset_file:
|
154 |
+
with st.spinner("Fine-tuning in progress..."):
|
155 |
+
dataset = Dataset.from_pandas(df)
|
156 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
157 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
158 |
+
|
159 |
+
def tokenize_function(examples):
|
160 |
+
return tokenizer(examples['text'], padding="max_length", truncation=True)
|
161 |
+
|
162 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
163 |
+
training_args = TrainingArguments(output_dir="./results", num_train_epochs=1, per_device_train_batch_size=8)
|
164 |
+
trainer = Trainer(model=model, args=training_args, train_dataset=tokenized_datasets)
|
165 |
+
trainer.train()
|
166 |
+
|
167 |
+
st.success("Model fine-tuned successfully!")
|
168 |
|
169 |
# Load and display OSINT dataset
|
170 |
st.write("### OSINT Dataset")
|