Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,8 @@
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
-
import
|
4 |
-
from
|
5 |
-
import
|
6 |
-
import pandas as pd
|
7 |
-
from datasets import Dataset
|
8 |
-
from huggingface_hub import hf_api
|
9 |
|
10 |
# Title and description
|
11 |
st.title("OSINT Tool 🏢")
|
@@ -13,7 +10,7 @@ st.markdown("""
|
|
13 |
This tool performs **Open Source Intelligence (OSINT)** analysis on GitHub repositories and fetches titles from URLs.
|
14 |
It also allows uploading datasets (CSV format) for fine-tuning models like **DistilBERT**.
|
15 |
""")
|
16 |
-
|
17 |
# Sidebar for navigation
|
18 |
st.sidebar.title("Navigation")
|
19 |
app_mode = st.sidebar.radio("Choose the mode", ["GitHub Repository Analysis", "URL Title Fetcher", "Dataset Upload & Fine-Tuning"])
|
@@ -26,22 +23,13 @@ if app_mode == "GitHub Repository Analysis":
|
|
26 |
|
27 |
if st.button("Analyze Repository"):
|
28 |
if repo_owner and repo_name:
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
st.write(f"**Owner**: {data['owner']['login']}")
|
37 |
-
st.write(f"**Stars**: {data['stargazers_count']}")
|
38 |
-
st.write(f"**Forks**: {data['forks_count']}")
|
39 |
-
st.write(f"**Language**: {data['language']}")
|
40 |
-
st.write(f"**Description**: {data['description']}")
|
41 |
-
else:
|
42 |
-
st.error(f"Error: {data.get('message', 'Something went wrong with the request')}")
|
43 |
-
except Exception as e:
|
44 |
-
st.error(f"Error occurred: {e}")
|
45 |
else:
|
46 |
st.warning("Please enter both repository owner and name.")
|
47 |
|
@@ -52,20 +40,11 @@ elif app_mode == "URL Title Fetcher":
|
|
52 |
|
53 |
if st.button("Fetch Title"):
|
54 |
if url:
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
if match:
|
61 |
-
title = match.group(1)
|
62 |
-
st.write(f"**Page Title**: {title}")
|
63 |
-
else:
|
64 |
-
st.warning("Title tag not found in the page")
|
65 |
-
else:
|
66 |
-
st.error(f"Failed to retrieve the page. Status code: {response.status_code}")
|
67 |
-
except Exception as e:
|
68 |
-
st.error(f"Error occurred: {e}")
|
69 |
else:
|
70 |
st.warning("Please enter a valid URL.")
|
71 |
|
@@ -76,58 +55,4 @@ elif app_mode == "Dataset Upload & Fine-Tuning":
|
|
76 |
uploaded_file = st.file_uploader("Upload a CSV file for fine-tuning", type="csv")
|
77 |
|
78 |
if uploaded_file is not None:
|
79 |
-
|
80 |
-
df = pd.read_csv(uploaded_file)
|
81 |
-
|
82 |
-
# Display dataset preview
|
83 |
-
st.subheader("Dataset Preview")
|
84 |
-
st.write(df.head())
|
85 |
-
|
86 |
-
# Convert CSV to Hugging Face dataset format
|
87 |
-
dataset = Dataset.from_pandas(df)
|
88 |
-
|
89 |
-
model_name = st.selectbox("Select model for fine-tuning", ["distilbert-base-uncased"])
|
90 |
-
|
91 |
-
if st.button("Fine-tune Model"):
|
92 |
-
if model_name:
|
93 |
-
try:
|
94 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
95 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
96 |
-
|
97 |
-
# Prepare the dataset
|
98 |
-
def preprocess_function(examples):
|
99 |
-
return tokenizer(examples['text'], truncation=True, padding=True)
|
100 |
-
|
101 |
-
tokenized_datasets = dataset.map(preprocess_function, batched=True)
|
102 |
-
|
103 |
-
# Fine-tuning setup (using Hugging Face Trainer for a complete setup)
|
104 |
-
from transformers import Trainer, TrainingArguments
|
105 |
-
|
106 |
-
training_args = TrainingArguments(
|
107 |
-
output_dir="./results",
|
108 |
-
evaluation_strategy="epoch",
|
109 |
-
learning_rate=2e-5,
|
110 |
-
per_device_train_batch_size=16,
|
111 |
-
per_device_eval_batch_size=16,
|
112 |
-
num_train_epochs=3,
|
113 |
-
weight_decay=0.01,
|
114 |
-
)
|
115 |
-
|
116 |
-
trainer = Trainer(
|
117 |
-
model=model,
|
118 |
-
args=training_args,
|
119 |
-
train_dataset=tokenized_datasets,
|
120 |
-
eval_dataset=tokenized_datasets,
|
121 |
-
)
|
122 |
-
|
123 |
-
# Train the model
|
124 |
-
trainer.train()
|
125 |
-
|
126 |
-
st.success("Fine-tuning completed successfully!")
|
127 |
-
except Exception as e:
|
128 |
-
st.error(f"Error during fine-tuning: {e}")
|
129 |
-
else:
|
130 |
-
st.warning("Please select a model for fine-tuning.")
|
131 |
-
|
132 |
-
else:
|
133 |
-
st.warning("Please upload a dataset.")
|
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
+
from src.github_analysis import analyze_github_repo
|
4 |
+
from src.url_fetcher import fetch_url_title
|
5 |
+
from src.fine_tune_helpers import fine_tune_model
|
|
|
|
|
|
|
6 |
|
7 |
# Title and description
|
8 |
st.title("OSINT Tool 🏢")
|
|
|
10 |
This tool performs **Open Source Intelligence (OSINT)** analysis on GitHub repositories and fetches titles from URLs.
|
11 |
It also allows uploading datasets (CSV format) for fine-tuning models like **DistilBERT**.
|
12 |
""")
|
13 |
+
|
14 |
# Sidebar for navigation
|
15 |
st.sidebar.title("Navigation")
|
16 |
app_mode = st.sidebar.radio("Choose the mode", ["GitHub Repository Analysis", "URL Title Fetcher", "Dataset Upload & Fine-Tuning"])
|
|
|
23 |
|
24 |
if st.button("Analyze Repository"):
|
25 |
if repo_owner and repo_name:
|
26 |
+
repo_data = analyze_github_repo(repo_owner, repo_name)
|
27 |
+
if repo_data:
|
28 |
+
st.subheader("Repository Details")
|
29 |
+
for key, value in repo_data.items():
|
30 |
+
st.write(f"**{key}**: {value}")
|
31 |
+
else:
|
32 |
+
st.error("Failed to retrieve repository details.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
else:
|
34 |
st.warning("Please enter both repository owner and name.")
|
35 |
|
|
|
40 |
|
41 |
if st.button("Fetch Title"):
|
42 |
if url:
|
43 |
+
title = fetch_url_title(url)
|
44 |
+
if title:
|
45 |
+
st.write(f"**Page Title**: {title}")
|
46 |
+
else:
|
47 |
+
st.error("Failed to retrieve the page title.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
else:
|
49 |
st.warning("Please enter a valid URL.")
|
50 |
|
|
|
55 |
uploaded_file = st.file_uploader("Upload a CSV file for fine-tuning", type="csv")
|
56 |
|
57 |
if uploaded_file is not None:
|
58 |
+
fine_tune_model(uploaded_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|