from src.fine_tune_helpers import preprocess_data, train_model, save_model import logging def fine_tune_model(dataset_path, config): try: # Preprocess data data = preprocess_data(dataset_path) # Initialize model and configure hyperparameters model = train_model(data, config) # Save the fine-tuned model save_model(model) logging.info("Model fine-tuning complete!") except Exception as e: logging.error(f"Error during model fine-tuning: {e}") if __name__ == "__main__": import argparse # Set up argument parser parser = argparse.ArgumentParser(description="Fine-tune a model with specified dataset and configuration.") parser.add_argument("dataset_path", type=str, help="Path to the dataset file.") parser.add_argument("--config", type=str, default="configs/model_config.json", help="Path to the configuration file.") args = parser.parse_args() # Fine-tune the model with provided arguments fine_tune_model(args.dataset_path, args.config)