import streamlit as st import torch from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from transformers.utils import logging # Set up logging logging.set_verbosity_info() logger = logging.get_logger("transformers") # Model names original_model_name = 't5-small' fine_tuned_model_name = 'daljeetsingh/sql_ft_t5small_kag' # Load models and tokenizer tokenizer = AutoTokenizer.from_pretrained(original_model_name) original_model = AutoModelForSeq2SeqLM.from_pretrained(original_model_name, torch_dtype=torch.bfloat16) fine_tuned_model = AutoModelForSeq2SeqLM.from_pretrained(fine_tuned_model_name, torch_dtype=torch.bfloat16) # Move models to GPU device = 'cuda' if torch.cuda.is_available() else 'cpu' original_model.to(device) fine_tuned_model.to(device) def generate_sql_query(prompt): """ Generate SQL queries using both the original and fine-tuned models. """ inputs = tokenizer(prompt, return_tensors='pt').to(device) try: # Generate output from the original model original_output = original_model.generate( inputs["input_ids"], max_new_tokens=200, ) original_sql = tokenizer.decode( original_output[0], skip_special_tokens=True ) # Generate output from the fine-tuned model fine_tuned_output = fine_tuned_model.generate( inputs["input_ids"], max_new_tokens=200, ) fine_tuned_sql = tokenizer.decode( fine_tuned_output[0], skip_special_tokens=True ) return original_sql, fine_tuned_sql except Exception as e: logger.error(f"Error: {str(e)}") return f"Error: {str(e)}", None # Streamlit App Interface st.title("SQL Query Generation") st.markdown("This application generates SQL queries based on your input prompt.") # Input prompt prompt = st.text_area( "Enter your prompt here...", value="Find all employees who joined after 2020.", height=150 ) # Generate button if st.button("Generate"): if prompt: original_sql, fine_tuned_sql = generate_sql_query(prompt) st.subheader("Original Model Output") st.text_area("Original SQL Query", value=original_sql, height=200) st.subheader("Fine-Tuned Model Output") st.text_area("Fine-Tuned SQL Query", value=fine_tuned_sql, height=200) else: st.warning("Please enter a prompt to generate SQL queries.") # Examples st.sidebar.title("Examples") st.sidebar.markdown(""" - **Example 1**: Find all employees who joined after 2020. - **Example 2**: Retrieve the names of customers who purchased product X in the last month. """)