File size: 1,824 Bytes
31fed9d dff0f84 31fed9d dff0f84 31fed9d dff0f84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
# Initialize Replit LLM Pipeline
try:
nlp_pipeline = pipeline("text2text-generation", model=model_name)
st.success("Model loaded successfully!")
except Exception as e:
st.error(f"Error loading model: {e}. Please verify the model name or your internet connection.")
st.stop()
# Input Section
st.subheader("Input Your Query")
user_input = st.text_area("Enter your query or task description", height=150)
# Submit Button
if st.button("Generate Output"):
if user_input.strip() == "":
st.warning("Please enter a valid input.")
else:
with st.spinner("Processing..."):
try:
# Generate response using Replit LLM
output = nlp_pipeline(user_input)
response = output[0]["generated_text"]
st.subheader("AI Response")
st.write(response)
except Exception as e:
st.error(f"An error occurred: {e}")
# Handling Code Optimization:
if task_type == "Code Optimization":
st.info("Paste your Python code for optimization recommendations.")
user_code = st.text_area("Paste your Python code", height=200)
if st.button("Optimize Code"):
if user_code.strip() == "":
st.warning("Please paste valid Python code to optimize.")
else:
with st.spinner("Analyzing and optimizing..."):
try:
optimization_prompt = f"Optimize the following Python code:\n\n{user_code}"
output = nlp_pipeline(optimization_prompt)
optimized_code = output[0]["generated_text"]
st.subheader("Optimized Code")
st.code(optimized_code)
except Exception as e:
st.error(f"An error occurred while optimizing code: {e}")
|