File size: 7,920 Bytes
88a170b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import time
from typing import Optional
import subprocess

import torch
import os

from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
from tensorizer import TensorDeserializer
from tensorizer.utils import no_init_or_tensor
from collections import OrderedDict
from cog import BasePredictor, ConcatenateIterator, Input, Path

# from config import DEFAULT_MODEL_NAME, DEFAULT_CONFIG_PATH, load_tokenizer, load_tensorizer
from subclass import YieldingReplitCode

# Weights are either local or in a cloud bucket.

# For development, point to a local path on disk.
# This is the path from which we pull weights when there's no COG_WEIGHTS environment variable (COG_WEIGHTS is a thing for trainable models)
# TENSORIZER_WEIGHTS_PATH = "model/model.tensors"
TENSORIZER_WEIGHTS_PATH = "gs://replicate-weights/replit-code-v1-3b/model.tensors"

# Set this to a GCP URL when pushing the model
# TENSORIZER_WEIGHTS_PATH = None 

DEFAULT_CONFIG_PATH = "model/"
TOKENIZER_PATH = "model/"

def maybe_download(path):
    if path.startswith("gs://"):
        st = time.time()
        output_path = "/tmp/weights.tensors"
        subprocess.check_call(["gcloud", "storage", "cp", path, output_path])
        print(f"weights downloaded in {time.time() - st}")
        return output_path
    return path


class Predictor(BasePredictor):
    def setup(self):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"

        # set TOKENIZERS_PARALLELISM to false to avoid a warning
        os.environ["TOKENIZERS_PARALLELISM"] = "false"

        self.model = self.load_tensorizer(
            weights=maybe_download(TENSORIZER_WEIGHTS_PATH), plaid_mode=True, cls=YieldingReplitCode, config_path=DEFAULT_CONFIG_PATH,
        )
        self.tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH, trust_remote_code=True)
    
    def load_tensorizer(self, weights, plaid_mode, cls, config_path):
        st = time.time()
        print(f"deserializing weights from {weights}")

        config = AutoConfig.from_pretrained(config_path, trust_remote_code=True)
        config.attn_config['attn_impl'] = 'triton'

        # with no_init_or_tensor():
        #     model = YieldingReplitCode.from_pretrained('./model/', config=config, trust_remote_code=True)


        model = no_init_or_tensor(
            lambda: cls.from_pretrained(
                None, config=config, state_dict=OrderedDict(), trust_remote_code=True,
            )
        )


        deserialized = TensorDeserializer(weights, plaid_mode=True)
        deserialized.load_into_module(model)
        try:
          model = model.to(dtype=torch.bfloat16)
        except:
            pass

        print(f"weights loaded in {time.time() - st}")
        return model

    def predict(
        self,
        prompt: str = Input(description=f"Text prompt"),
        max_length: int = Input(
            description="Maximum number of tokens to generate. A word is generally 2-3 tokens",
            ge=1,
            default=500,
        ),
        temperature: float = Input(
            description="Adjusts randomness of outputs, greater than 1 is random and 0 is deterministic, 0.75 is a good starting value.",
            ge=0.01,
            le=5,
            default=0.75,
        ),
        top_p: float = Input(
            description="When decoding text, samples from the top p percentage of most likely tokens; lower to ignore less likely tokens",
            ge=0.01,
            le=1.0,
            default=1.0,
        ),
        repetition_penalty: float = Input(
            description="Penalty for repeated words in generated text; 1 is no penalty, values greater than 1 discourage repetition, less than 1 encourage it.",
            ge=0.01,
            le=5,
            default=1,
        ),
        length_penalty: float = Input(
            description="Increasing the length_penalty parameter above 1.0 will cause the model to favor longer sequences, while decreasing it below 1.0 will cause the model to favor shorter sequences.",
            ge=0.01,
            le=5,
            default=1,
        ),
        no_repeat_ngram_size: int = Input(
            description="If set to int > 0, all ngrams of size no_repeat_ngram_size can only occur once.",
            ge=0,
            default=0,
        ),
        stop_sequence: str = Input(
            description="Generation will hault if this token is produced. Currently, only single token stop sequences are support and it is recommended to use `###` as the stop sequence if you want to control generation termination.",
            default=None,
        ),
        seed: int = Input(
            description="Set seed for reproducible outputs. Set to -1 for random seed.",
            ge=-1,
            default=-1,
        ),
        debug: bool = Input(
            description="provide debugging output in logs", default=False
        ),
    ) -> ConcatenateIterator[str]:
        input = self.tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)

        # set torch seed
        if seed == -1:
            torch.seed()

        else:
            torch.manual_seed(seed)
            torch.cuda.manual_seed(seed)

        with torch.inference_mode():
            first_token_yielded = False
            prev_ids = []
            for output in self.model.generate(
                input,
                max_length=max_length,
                do_sample=True,
                temperature=temperature,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                length_penalty=length_penalty,
                no_repeat_ngram_size=no_repeat_ngram_size,
            ):
                cur_id = output.item()

                # in order to properly handle spaces, we need to do our own tokenizing. Fun!
                # we're building up a buffer of sub-word / punctuation tokens until we hit a space, and then yielding whole words + punctuation.
                cur_token = self.tokenizer.convert_ids_to_tokens(cur_id)

                # skip initial newline, which this almost always yields. hack - newline id = 13.
                if not first_token_yielded and not prev_ids and cur_id == 187:
                    continue

                # Ġ means a space, means we yield previous tokens
                if cur_token.startswith("Ġ"):  # this is not a standard G.
                    # first token
                    if not prev_ids:
                        prev_ids = [cur_id]
                        continue

                    # there are tokens to yield
                    else:
                        token = self.tokenizer.decode(prev_ids, clean_up_tokenization_spaces=False)
                        prev_ids = [cur_id]

                        if not first_token_yielded:
                            # no leading space for first token
                            token = token.strip()
                            first_token_yielded = True
                        yield token
                                # End token
                elif cur_token == "<|endoftext|>":
                    break
                
                elif stop_sequence and cur_token == stop_sequence:
                    break

                else:
                    prev_ids.append(cur_id)
                    continue

            # remove any special tokens such as </s>
            token = self.tokenizer.decode(prev_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
            if not first_token_yielded:
                # no leading space for first token
                token = token.strip()
                first_token_yielded = True
            yield token

        if debug:
            print(f"cur memory: {torch.cuda.memory_allocated()}")
            print(f"max allocated: {torch.cuda.max_memory_allocated()}")
            print(f"peak memory: {torch.cuda.max_memory_reserved()}")