|
|
|
try: |
|
nlp_pipeline = pipeline("text2text-generation", model=model_name) |
|
st.success("Model loaded successfully!") |
|
except Exception as e: |
|
st.error(f"Error loading model: {e}. Please verify the model name or your internet connection.") |
|
st.stop() |
|
|
|
|
|
st.subheader("Input Your Query") |
|
user_input = st.text_area("Enter your query or task description", height=150) |
|
|
|
|
|
if st.button("Generate Output"): |
|
if user_input.strip() == "": |
|
st.warning("Please enter a valid input.") |
|
else: |
|
with st.spinner("Processing..."): |
|
try: |
|
|
|
output = nlp_pipeline(user_input) |
|
response = output[0]["generated_text"] |
|
st.subheader("AI Response") |
|
st.write(response) |
|
except Exception as e: |
|
st.error(f"An error occurred: {e}") |
|
|
|
|
|
if task_type == "Code Optimization": |
|
st.info("Paste your Python code for optimization recommendations.") |
|
user_code = st.text_area("Paste your Python code", height=200) |
|
if st.button("Optimize Code"): |
|
if user_code.strip() == "": |
|
st.warning("Please paste valid Python code to optimize.") |
|
else: |
|
with st.spinner("Analyzing and optimizing..."): |
|
try: |
|
optimization_prompt = f"Optimize the following Python code:\n\n{user_code}" |
|
output = nlp_pipeline(optimization_prompt) |
|
optimized_code = output[0]["generated_text"] |
|
st.subheader("Optimized Code") |
|
st.code(optimized_code) |
|
except Exception as e: |
|
st.error(f"An error occurred while optimizing code: {e}") |
|
|