Spaces:
Sleeping
Sleeping
File size: 1,298 Bytes
47c2354 c6b6d52 1856062 c6b6d52 1856062 c6b6d52 f4fa67b 3cc14e8 bfd07fd 1cd6700 bfd07fd 576bbe0 3cc14e8 bfd07fd 1cd6700 bfd07fd 3cc14e8 576bbe0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
from fastapi import FastAPI, Form
from fastapi.responses import FileResponse
from typing import Annotated
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
app = FastAPI()
@app.get("/", response_class=FileResponse)
async def root():
return "home.html"
@app.post("/hello/")
def say_hello(msg: Annotated[str, Form()]):
print("model")
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "HuggingFaceTB/SmolLM-1.7B-Instruct"
device = "cpu" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
messages = [{"role": "user", "content": msg}]
input_text=tokenizer.apply_chat_template(messages, tokenize=False)
print(input_text)
input_ids = tokenizer(msg, return_tensors="pt").to("cpu")
print("output")
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=256, temperature=0.6, top_p=0.92, do_sample=True)
print("complete")
return {"message": tokenizer.decode(outputs[0])} |