Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,820 Bytes
0b836de 411a38c 60f6770 321d53a 0b836de 60f6770 0b836de 60f6770 0b836de 60f6770 0b836de 60f6770 9b6e90b 0b836de 60f6770 0b836de 60f6770 0b836de 60f6770 0b836de 60f6770 0b836de 60f6770 cc34367 60f6770 f8fd4f0 60f6770 058ad28 60f6770 0b836de 9b6e90b 0b836de 60f6770 d6043de 60f6770 0b836de b7806e4 0b836de 60f6770 0b836de b7806e4 60f6770 058ad28 60f6770 0b836de f8fd4f0 cc34367 60f6770 9b6e90b 0b836de 9b6e90b 0b836de 9b6e90b 0b836de 60f6770 cc34367 60f6770 cc34367 60f6770 cc34367 058ad28 1bbffff 60f6770 ee52443 60f6770 0b836de 60f6770 0b836de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import gradio as gr
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler, LCMScheduler, AutoencoderKL,DiffusionPipeline
import torch
from typing import Tuple
import numpy as np
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import spaces
import os
import random
import uuid
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
MAX_SEED = np.iinfo(np.int32).max
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
# by PixArt-alpha/PixArt-Sigma
style_list = [
{
"name": "(No style)",
"prompt": "{prompt}",
"negative_prompt": "",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "Photographic",
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Anime",
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Manga",
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
},
{
"name": "Digital Art",
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "photo, photorealistic, realism, ugly",
},
{
"name": "Pixel art",
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "Neonpunk",
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
},
{
"name": "3D Model",
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
if not negative:
negative = ""
return p.replace("{prompt}", positive), n + negative
JX_pipe = StableDiffusionXLPipeline.from_pretrained(
"RunDiffusion/Juggernaut-X-Hyper",
vae=vae,
torch_dtype=torch.float16,
)
JX_pipe.to("cuda")
J10_pipe = StableDiffusionXLPipeline.from_pretrained(
"RunDiffusion/Juggernaut-X-v10",
vae=vae,
torch_dtype=torch.float16,
)
J10_pipe.to("cuda")
J9_pipe = StableDiffusionXLPipeline.from_pretrained(
"RunDiffusion/Juggernaut-XL-v9",
vae=vae,
torch_dtype=torch.float16,
custom_pipeline="lpw_stable_diffusion_xl",
use_safetensors=True,
add_watermarker=False,
variant="fp16",
)
J9_pipe.to("cuda")
@spaces.GPU
def run_comparison(prompt: str,
negative_prompt: str = "",
style: str = DEFAULT_STYLE_NAME,
use_negative_prompt: bool = False,
num_inference_steps: int = 30,
num_images_per_prompt: int = 2,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
progress=gr.Progress(track_tqdm=True),
):
seed = int(randomize_seed_fn(seed, randomize_seed))
if not use_negative_prompt:
negative_prompt = ""
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
image_r3 = JX_pipe(prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images_per_prompt,
cross_attention_kwargs={"scale": 0.65},
output_type="pil",
).images
image_paths_r3 = [save_image(img) for img in image_r3]
image_r4 = J10_pipe(prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images_per_prompt,
cross_attention_kwargs={"scale": 0.65},
output_type="pil",
).images
image_paths_r4 = [save_image(img) for img in image_r4]
image_r5 = J9_pipe(prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images_per_prompt,
cross_attention_kwargs={"scale": 0.65},
output_type="pil",
).images
image_paths_r5 = [save_image(img) for img in image_r5]
return image_paths_r3, image_paths_r4,image_paths_r5, seed
examples = ["A dignified beaver wearing glasses, a vest, and colorful neck tie.",
"The spirit of a tamagotchi wandering in the city of Barcelona",
"an ornate, high-backed mahogany chair with a red cushion",
"a sketch of a camel next to a stream",
"a delicate porcelain teacup sits on a saucer, its surface adorned with intricate blue patterns",
"a baby swan grafitti",
"A bald eagle made of chocolate powder, mango, and whipped cream"
]
with gr.Blocks(theme=gr.themes.Base()) as demo:
gr.Markdown("## One step Juggernaut-XL comparison 🦶")
gr.Markdown('Compare Juggernaut-XL variants and distillations able to generate images in a single diffusion step')
prompt = gr.Textbox(label="Prompt")
run = gr.Button("Run")
with gr.Row(visible=True):
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Image Style",
)
with gr.Accordion("Advanced options", open=False):
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Steps",
minimum=10,
maximum=60,
step=1,
value=30,
)
with gr.Row():
num_images_per_prompt = gr.Slider(
label="Images",
minimum=1,
maximum=5,
step=1,
value=2,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
visible=True
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=512,
maximum=2048,
step=8,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=2048,
step=8,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=20.0,
step=0.1,
value=6,
)
with gr.Row():
with gr.Column():
image_r3 = gr.Gallery(label="Juggernaut-X",columns=1, preview=True,)
gr.Markdown("## [Juggernaut-X](https://huggingface.co)")
with gr.Column():
image_r4 = gr.Gallery(label="Juggernaut-X-10",columns=1, preview=True,)
gr.Markdown("## [Juggernaut-XL-10](https://huggingface.co)")
with gr.Column():
image_r5 = gr.Gallery(label="Juggernaut-XL-9",columns=1, preview=True,)
gr.Markdown("## [Juggernaut-XL-9](https://huggingface.co)")
image_outputs = [image_r3, image_r4, image_r5]
gr.on(
triggers=[prompt.submit, run.click],
fn=run_comparison,
inputs=[
prompt,
negative_prompt,
style_selection,
use_negative_prompt,
num_inference_steps,
num_images_per_prompt,
seed,
width,
height,
guidance_scale,
randomize_seed,
],
outputs=image_outputs
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.Examples(
examples=examples,
fn=run_comparison,
inputs=prompt,
outputs=image_outputs,
cache_examples=False,
run_on_click=True
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(show_api=False, debug=False) |