Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
import os | |
import random | |
import uuid | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import spaces | |
import torch | |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
DESCRIPTION = """ | |
# Juggernaut X v10 | |
""" | |
def save_image(img): | |
unique_name = str(uuid.uuid4()) + ".jpeg" | |
img.save(unique_name) | |
return unique_name | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
MAX_SEED = np.iinfo(np.int32).max | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>" | |
MAX_SEED = np.iinfo(np.int32).max | |
USE_TORCH_COMPILE = 0 | |
ENABLE_CPU_OFFLOAD = 0 | |
if torch.cuda.is_available(): | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"RunDiffusion/Juggernaut-X-v10", | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
) | |
#pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
#pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle") | |
#pipe.set_adapters("dalle") | |
pipe.to("cuda") | |
def generate( | |
prompt: str, | |
negative_prompt: str = "", | |
use_negative_prompt: bool = False, | |
num_inference_steps: int = 30, | |
num_images_per_prompt: int = 2, | |
seed: int = 0, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale: float = 3, | |
randomize_seed: bool = False, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
if not use_negative_prompt: | |
negative_prompt = "" # type: ignore | |
images = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=num_images_per_prompt, | |
cross_attention_kwargs={"scale": 0.65}, | |
output_type="pil", | |
).images | |
image_paths = [save_image(img) for img in images] | |
print(image_paths) | |
return image_paths, seed | |
examples = [ | |
"neon holography crystal cat", | |
"a cat eating a piece of cheese", | |
"an astronaut riding a horse in space", | |
"a cartoon of a boy playing with a tiger", | |
"a cute robot artist painting on an easel, concept art", | |
"a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone" | |
] | |
css = ''' | |
.gradio-container{max-width: 560px !important} | |
h1{text-align:center} | |
footer { | |
visibility: hidden | |
} | |
''' | |
with gr.Blocks(css=css, theme="pseudolab/huggingface-korea-theme") as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton( | |
value="Duplicate Space for private use", | |
elem_id="duplicate-button", | |
visible=False, | |
) | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False) | |
with gr.Accordion("Advanced options", open=False): | |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
lines=4, | |
max_lines=6, | |
value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""", | |
placeholder="Enter a negative prompt", | |
visible=True, | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Steps", | |
minimum=10, | |
maximum=60, | |
step=1, | |
value=30, | |
) | |
with gr.Row(): | |
num_images_per_prompt = gr.Slider( | |
label="Images", | |
minimum=1, | |
maximum=5, | |
step=1, | |
value=2, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
visible=True | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(visible=True): | |
width = gr.Slider( | |
label="Width", | |
minimum=512, | |
maximum=2048, | |
step=8, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=512, | |
maximum=2048, | |
step=8, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.1, | |
maximum=20.0, | |
step=0.1, | |
value=6, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
outputs=[result, seed], | |
fn=generate, | |
cache_examples=False, | |
) | |
use_negative_prompt.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt, | |
outputs=negative_prompt, | |
api_name=False, | |
) | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
negative_prompt.submit, | |
run_button.click, | |
], | |
fn=generate, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
use_negative_prompt, | |
num_inference_steps, | |
num_images_per_prompt, | |
seed, | |
width, | |
height, | |
guidance_scale, | |
randomize_seed, | |
], | |
outputs=[result, seed], | |
api_name="run", | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch(show_api=False, debug=False) |