Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler, LCMScheduler, AutoencoderKL,DiffusionPipeline | |
import torch | |
from typing import Tuple | |
import numpy as np | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
import spaces | |
import os | |
import random | |
import uuid | |
def save_image(img): | |
unique_name = str(uuid.uuid4()) + ".png" | |
img.save(unique_name) | |
return unique_name | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
MAX_SEED = np.iinfo(np.int32).max | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
# by PixArt-alpha/PixArt-Sigma | |
style_list = [ | |
{ | |
"name": "(No style)", | |
"prompt": "{prompt}", | |
"negative_prompt": "", | |
}, | |
{ | |
"name": "Cinematic", | |
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", | |
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", | |
}, | |
{ | |
"name": "Photographic", | |
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed", | |
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", | |
}, | |
{ | |
"name": "Anime", | |
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", | |
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", | |
}, | |
{ | |
"name": "Manga", | |
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style", | |
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style", | |
}, | |
{ | |
"name": "Digital Art", | |
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed", | |
"negative_prompt": "photo, photorealistic, realism, ugly", | |
}, | |
{ | |
"name": "Pixel art", | |
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics", | |
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic", | |
}, | |
{ | |
"name": "Fantasy art", | |
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", | |
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", | |
}, | |
{ | |
"name": "Neonpunk", | |
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", | |
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", | |
}, | |
{ | |
"name": "3D Model", | |
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", | |
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", | |
}, | |
] | |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} | |
STYLE_NAMES = list(styles.keys()) | |
DEFAULT_STYLE_NAME = "(No style)" | |
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]: | |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) | |
if not negative: | |
negative = "" | |
return p.replace("{prompt}", positive), n + negative | |
JX_pipe = StableDiffusionXLPipeline.from_pretrained( | |
"RunDiffusion/Juggernaut-X-Hyper", | |
vae=vae, | |
torch_dtype=torch.float16, | |
) | |
JX_pipe.to("cuda") | |
J10_pipe = StableDiffusionXLPipeline.from_pretrained( | |
"RunDiffusion/Juggernaut-X-v10", | |
vae=vae, | |
torch_dtype=torch.float16, | |
) | |
J10_pipe.to("cuda") | |
J9_pipe = StableDiffusionXLPipeline.from_pretrained( | |
"RunDiffusion/Juggernaut-XL-v9", | |
vae=vae, | |
torch_dtype=torch.float16, | |
custom_pipeline="lpw_stable_diffusion_xl", | |
use_safetensors=True, | |
add_watermarker=False, | |
variant="fp16", | |
) | |
J9_pipe.to("cuda") | |
def run_comparison(prompt: str, | |
negative_prompt: str = "", | |
style: str = DEFAULT_STYLE_NAME, | |
use_negative_prompt: bool = False, | |
num_inference_steps: int = 30, | |
num_images_per_prompt: int = 2, | |
seed: int = 0, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale: float = 3, | |
randomize_seed: bool = False, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
if not use_negative_prompt: | |
negative_prompt = "" | |
prompt, negative_prompt = apply_style(style, prompt, negative_prompt) | |
image_r3 = JX_pipe(prompt=prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=num_images_per_prompt, | |
cross_attention_kwargs={"scale": 0.65}, | |
output_type="pil", | |
).images | |
image_paths_r3 = [save_image(img) for img in image_r3] | |
image_r4 = J10_pipe(prompt=prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=num_images_per_prompt, | |
cross_attention_kwargs={"scale": 0.65}, | |
output_type="pil", | |
).images | |
image_paths_r4 = [save_image(img) for img in image_r4] | |
image_r5 = J9_pipe(prompt=prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=num_images_per_prompt, | |
cross_attention_kwargs={"scale": 0.65}, | |
output_type="pil", | |
).images | |
image_paths_r5 = [save_image(img) for img in image_r5] | |
return image_paths_r3, image_paths_r4,image_paths_r5, seed | |
examples = ["A dignified beaver wearing glasses, a vest, and colorful neck tie.", | |
"The spirit of a tamagotchi wandering in the city of Barcelona", | |
"an ornate, high-backed mahogany chair with a red cushion", | |
"a sketch of a camel next to a stream", | |
"a delicate porcelain teacup sits on a saucer, its surface adorned with intricate blue patterns", | |
"a baby swan grafitti", | |
"A bald eagle made of chocolate powder, mango, and whipped cream" | |
] | |
with gr.Blocks(theme=gr.themes.Base()) as demo: | |
gr.Markdown("## One step Juggernaut-XL comparison 🦶") | |
gr.Markdown('Compare Juggernaut-XL variants and distillations able to generate images in a single diffusion step') | |
prompt = gr.Textbox(label="Prompt") | |
run = gr.Button("Run") | |
with gr.Row(visible=True): | |
style_selection = gr.Radio( | |
show_label=True, | |
container=True, | |
interactive=True, | |
choices=STYLE_NAMES, | |
value=DEFAULT_STYLE_NAME, | |
label="Image Style", | |
) | |
with gr.Accordion("Advanced options", open=False): | |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=True, | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Steps", | |
minimum=10, | |
maximum=60, | |
step=1, | |
value=30, | |
) | |
with gr.Row(): | |
num_images_per_prompt = gr.Slider( | |
label="Images", | |
minimum=1, | |
maximum=5, | |
step=1, | |
value=2, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
visible=True | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(visible=True): | |
width = gr.Slider( | |
label="Width", | |
minimum=512, | |
maximum=2048, | |
step=8, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=512, | |
maximum=2048, | |
step=8, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.1, | |
maximum=20.0, | |
step=0.1, | |
value=6, | |
) | |
with gr.Row(): | |
with gr.Column(): | |
image_r3 = gr.Gallery(label="Juggernaut-X",columns=1, preview=True,) | |
gr.Markdown("## [Juggernaut-X](https://huggingface.co)") | |
with gr.Column(): | |
image_r4 = gr.Gallery(label="Juggernaut-X-10",columns=1, preview=True,) | |
gr.Markdown("## [Juggernaut-XL-10](https://huggingface.co)") | |
with gr.Column(): | |
image_r5 = gr.Gallery(label="Juggernaut-XL-9",columns=1, preview=True,) | |
gr.Markdown("## [Juggernaut-XL-9](https://huggingface.co)") | |
image_outputs = [image_r3, image_r4, image_r5] | |
gr.on( | |
triggers=[prompt.submit, run.click], | |
fn=run_comparison, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
style_selection, | |
use_negative_prompt, | |
num_inference_steps, | |
num_images_per_prompt, | |
seed, | |
width, | |
height, | |
guidance_scale, | |
randomize_seed, | |
], | |
outputs=image_outputs | |
) | |
use_negative_prompt.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt, | |
outputs=negative_prompt, | |
api_name=False, | |
) | |
gr.Examples( | |
examples=examples, | |
fn=run_comparison, | |
inputs=prompt, | |
outputs=image_outputs, | |
cache_examples=False, | |
run_on_click=True | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch(show_api=False, debug=False) |