File size: 2,363 Bytes
c2c42ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143f063
 
c2c42ca
 
 
 
 
143f063
 
c2c42ca
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gradio as gr
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler, LCMScheduler
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import spaces

### SDXL Turbo #### 

pipe_turbo = StableDiffusionXLPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
pipe_turbo.to("cuda")

### SDXL Lightning ### 

base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_1step_unet_x0.safetensors" 

unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
pipe_lightning = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")

pipe_lightning.scheduler = EulerDiscreteScheduler.from_config(pipe_lightning.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
pipe_lightning.to("cuda")

### Hyper SDXL ### 
repo_name = "ByteDance/Hyper-SD"
ckpt_name = "Hyper-SDXL-1step-Unet.safetensors"

unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo_name, ckpt_name), device="cuda"))
pipe_hyper = DiffusionPipeline.from_pretrained(base_model_id, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
pipe_hyper.scheduler = LCMScheduler.from_config(pipe_hyper.scheduler.config)
pipe_hyper.to("cuda")


@spaces.GPU
def run(prompt):
    image_turbo=pipe_turbo(prompt=prompt, num_inference_steps=1, guidance_scale=0).images[0]
    image_lightning=pipe_lightning(prompt=prompt, num_inference_steps=1, guidance_scale=0).images[0]
    image_hyper=pipe_hyper(prompt=prompt, num_inference_steps=1, guidance_scale=0, timesteps=[800]).images[0]
    return image_turbo, image_lightning, image_hyper


css = '''
.gradio-container{max-width: 768px !important}
'''
with gr.Blocks(css=css) as demo:
    prompt = gr.Textbox(label="Prompt")
    run = gr.Button("Run")
    with gr.Row():
        image_turbo = gr.Image(label="SDXL Turbo")
        image_lightning = gr.Image(label="SDXL Lightning")
        image_hyper = gr.Image("Hyper SDXL")
    run.click(fn=run, inputs=prompt, outputs=[image_turbo, image_lightning, image_hyper])