Spaces:
Running
on
Zero
Running
on
Zero
Commit
•
61bc6a3
1
Parent(s):
5e64d98
Update app.py
Browse files
app.py
CHANGED
@@ -1,79 +1,47 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
from diffusers import AutoencoderKL, StableDiffusionXLPipeline
|
4 |
import torch
|
5 |
-
import
|
6 |
-
import
|
7 |
-
|
8 |
-
client_lightning = Client("AP123/SDXL-Lightning")
|
9 |
-
client_hyper = Client("ByteDance/Hyper-SDXL-1Step-T2I")
|
10 |
-
|
11 |
-
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
12 |
|
13 |
### SDXL Turbo ####
|
14 |
-
pipe_turbo = StableDiffusionXLPipeline.from_pretrained("stabilityai/sdxl-turbo",
|
15 |
-
vae=vae,
|
16 |
-
torch_dtype=torch.float16,
|
17 |
-
variant="fp16"
|
18 |
-
)
|
19 |
pipe_turbo.to("cuda")
|
20 |
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
)
|
28 |
-
return result_lighting
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
height=1024,
|
34 |
-
width=1024,
|
35 |
-
prompt=prompt,
|
36 |
-
seed=3413,
|
37 |
-
api_name="/process_image"
|
38 |
-
)
|
39 |
-
return result_hyper
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
45 |
|
46 |
def run_comparison(prompt):
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
future_turbo = executor.submit(get_turbo_result, prompt)
|
52 |
-
|
53 |
-
# Wait for all futures to complete
|
54 |
-
results = concurrent.futures.wait(
|
55 |
-
[future_lighting, future_hyper, future_turbo],
|
56 |
-
return_when=concurrent.futures.ALL_COMPLETED
|
57 |
-
)
|
58 |
-
|
59 |
-
# Extract results from futures
|
60 |
-
result_lighting = future_lighting.result()
|
61 |
-
result_hyper = future_hyper.result()
|
62 |
-
image_turbo = future_turbo.result()
|
63 |
-
print(result_lighting)
|
64 |
-
print(result_hyper)
|
65 |
-
return image_turbo, result_lighting, result_hyper
|
66 |
|
67 |
-
|
68 |
-
.gradio-container{max-width: 768px !important}
|
69 |
-
'''
|
70 |
-
with gr.Blocks(css=css) as demo:
|
71 |
prompt = gr.Textbox(label="Prompt")
|
72 |
run = gr.Button("Run")
|
73 |
with gr.Row():
|
74 |
image_turbo = gr.Image(label="SDXL Turbo")
|
75 |
image_lightning = gr.Image(label="SDXL Lightning")
|
76 |
-
image_hyper = gr.Image("Hyper SDXL")
|
77 |
|
78 |
run.click(fn=run_comparison, inputs=prompt, outputs=[image_turbo, image_lightning, image_hyper])
|
79 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler, LCMScheduler
|
|
|
3 |
import torch
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
from safetensors.torch import load_file
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
### SDXL Turbo ####
|
8 |
+
pipe_turbo = StableDiffusionXLPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
|
|
|
|
|
|
|
|
|
9 |
pipe_turbo.to("cuda")
|
10 |
|
11 |
+
### SDXL Lightning ###
|
12 |
+
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
13 |
+
repo = "ByteDance/SDXL-Lightning"
|
14 |
+
ckpt = "sdxl_lightning_1step_unet_x0.safetensors"
|
15 |
|
16 |
+
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
|
17 |
+
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
|
18 |
+
pipe_lightning = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
19 |
+
pipe_lightning.scheduler = EulerDiscreteScheduler.from_config(pipe_lightning.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
|
20 |
+
pipe_lightning.to("cuda")
|
|
|
|
|
21 |
|
22 |
+
### Hyper SDXL ###
|
23 |
+
repo_name = "ByteDance/Hyper-SD"
|
24 |
+
ckpt_name = "Hyper-SDXL-1step-Unet.safetensors"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
|
27 |
+
unet.load_state_dict(load_file(hf_hub_download(repo_name, ckpt_name), device="cuda"))
|
28 |
+
pipe_hyper = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
29 |
+
pipe_hyper.scheduler = LCMScheduler.from_config(pipe_hyper.scheduler.config)
|
30 |
+
pipe_hyper.to("cuda")
|
31 |
|
32 |
def run_comparison(prompt):
|
33 |
+
image_turbo=pipe_turbo(prompt=prompt, num_inference_steps=1, guidance_scale=0).images[0]
|
34 |
+
image_lightning=pipe_lightning(prompt=prompt, num_inference_steps=1, guidance_scale=0).images[0]
|
35 |
+
image_hyper=pipe_hyper(prompt=prompt, num_inference_steps=1, guidance_scale=0, timesteps=[800]).images[0]
|
36 |
+
return image_turbo, image_lightning, image_hyper
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
with gr.Blocks() as demo:
|
|
|
|
|
|
|
39 |
prompt = gr.Textbox(label="Prompt")
|
40 |
run = gr.Button("Run")
|
41 |
with gr.Row():
|
42 |
image_turbo = gr.Image(label="SDXL Turbo")
|
43 |
image_lightning = gr.Image(label="SDXL Lightning")
|
44 |
+
image_hyper = gr.Image(label="Hyper SDXL")
|
45 |
|
46 |
run.click(fn=run_comparison, inputs=prompt, outputs=[image_turbo, image_lightning, image_hyper])
|
47 |
demo.launch()
|