File size: 3,301 Bytes
db2d287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import gradio as gr
from PIL import Image  
import torch
from muse import PipelineMuse
from diffusers import AutoPipelineForText2Image, UniPCMultistepScheduler

muse_512 = PipelineMuse.from_pretrained("openMUSE/muse-512").to("cuda", dtype=torch.float16)
muse_512.transformer.enable_xformers_memory_efficient_attention()

muse_512_fine = PipelineMuse.from_pretrained("openMUSE/muse-512-finetuned").to("cuda", dtype=torch.float16)
muse_512_fine.transformer.enable_xformers_memory_efficient_attention()


sdv1_5 = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5", variant="fp16").to("cuda", dtype=torch.float16)
sdv1_5.scheduler = UniPCMultistepScheduler.from_config(sdv1_5.scheduler.config)
sdv1_5.enable_xformers_memory_efficient_attention()

def infer(prompt, negative):
    print("Generating:")

    muse_512_image = muse_512(
        prompt, timesteps=16, guidance_scale=10, transformer_seq_len=1024, use_fp16=True, temperature=(2, 0), 
    )[0]

    muse_512_fine_image = muse_512_fine(
        prompt, timesteps=16, guidance_scale=10, transformer_seq_len=1024, use_fp16=True, temperature=(2, 0), 
    )[0]

    sdv1_5_image = sdv1_5(prompt, num_inference_steps=25).images[0]

    images = [muse_512_image, muse_512_fine_image, sdv1_5_image]

    return images


examples = [
    [
        'A high tech solarpunk utopia in the Amazon rainforest',
        'low quality',
        10,
    ],
    [
        'A pikachu fine dining with a view to the Eiffel Tower',
        'low quality',
        10,
    ],
    [
        'A mecha robot in a favela in expressionist style',
        'low quality, 3d, photorealistic',
        10,
    ],
    [
        'an insect robot preparing a delicious meal',
        'low quality, illustration',
        10,
    ],
    [
        "A small cabin on top of a snowy mountain in the style of Disney, artstation",
        'low quality, ugly',
        10,
    ],
]
    
    
css = """
h1 {
  text-align: center;
}

#component-0 {
  max-width: 730px;
  margin: auto;
}
"""

block = gr.Blocks(css=css)

with block:
    gr.Markdown("MUSE is an upcoming fast text2image model.")
    with gr.Group():
        with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
            with gr.Column():
                text = gr.Textbox(
                    label="Enter your prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False,
                )
            btn = gr.Button("Generate image", scale=0)

        gallery = gr.Gallery(
            label="Generated images", show_label=False,
        ).style()

    with gr.Accordion("Advanced settings", open=False):
        guidance_scale = gr.Slider(
            label="Guidance Scale", minimum=0, maximum=20, value=10, step=0.1
        )

    ex = gr.Examples(examples=examples, fn=infer, inputs=[text, negative, guidance_scale], outputs=gallery, cache_examples=False)
    ex.dataset.headers = [""]

    text.submit(infer, inputs=[text, negative, guidance_scale], outputs=gallery)
    negative.submit(infer, inputs=[text, negative, guidance_scale], outputs=gallery)
    btn.click(infer, inputs=[text, negative, guidance_scale], outputs=gallery)

block.launch()