# import argparse, os, sys, glob # sys.path.append(os.path.split(sys.path[0])[0]) from diffusers import StableDiffusionPipeline import torch from free_lunch_utils import register_free_upblock2d, register_free_crossattn_upblock2d import gradio as gr from PIL import Image import torch from muse import PipelineMuse from diffusers import AutoPipelineForText2Image, UniPCMultistepScheduler def infer(prompt, pip_sd, pip_freeu): print("Generating SD:") sd_image = pip_sd(prompt).images[0] print("Generating FreeU:") freeu_image = pip_freeu(prompt).images[0] # First SD, then freeu images = [sd_image, freeu_image] return images examples = [ [ "A small cabin on top of a snowy mountain in the style of Disney, artstation", ], [ "a monkey doing yoga on the beach", ], [ "half human half cat, a human cat hybrid", ], [ "a hedgehog using a calculator", ], [ "kanye west | diffuse lighting | fantasy | intricate elegant highly detailed lifelike photorealistic digital painting | artstation", ], [ "astronaut pig", ], [ "two people shouting at each other", ], [ "A linked in profile picture of Elon Musk", ], [ "A man looking out of a rainy window", ], [ "close up, iron man, eating breakfast in a cabin, symmetrical balance, hyper-realistic --ar 16:9 --style raw" ], [ 'A high tech solarpunk utopia in the Amazon rainforest', ], [ 'A pikachu fine dining with a view to the Eiffel Tower', ], [ 'A mecha robot in a favela in expressionist style', ], [ 'an insect robot preparing a delicious meal', ], ] css = """ h1 { text-align: center; } #component-0 { max-width: 730px; margin: auto; } """ block = gr.Blocks(css=css) options = ['SD1.4', 'SD1.5', 'SD2.1'] with block: gr.Markdown("SD vs. FreeU.") with gr.Group(): with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True): with gr.Column(): text = gr.Textbox( label="Enter your prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) btn = gr.Button("Generate image", scale=0) with gr.Accordion('FreeU Parameters', open=False): # sd_options = gr.Dropdown(options, label="SD options") sd_options = gr.Dropdown(options, value='SD1.4', label="SD options") # model_id = "CompVis/stable-diffusion-v1-4" if sd_options == 'SD1.4': model_id = "CompVis/stable-diffusion-v1-4" elif sd_options == 'SD1.5': model_id = "runwayml/stable-diffusion-v1-5" elif sd_options == 'SD2.1': model_id = "stabilityai/stable-diffusion-2-1" # pip_sd = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) # pip_sd = pip_sd.to("cuda") # pip_freeu = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) # pip_freeu = pip_freeu.to("cuda") # # -------- freeu block registration # register_free_upblock2d(pipe, b1=1.2, b2=1.4, s1=0.9, s2=0.2) # register_free_crossattn_upblock2d(pipe, b1=1.2, b2=1.4, s1=0.9, s2=0.2) # # -------- freeu block registration b1 = gr.Slider(label='b1: backbone factor of the first stage block of decoder', minimum=1, maximum=1.6, step=0.1, value=1) b2 = gr.Slider(label='b2: backbone factor of the second stage block of decoder', minimum=1, maximum=1.6, step=0.1, value=1) s1 = gr.Slider(label='s1: skip factor of the first stage block of decoder', minimum=0, maximum=1, step=0.1, value=1) s2 = gr.Slider(label='s2: skip factor of the second stage block of decoder', minimum=0, maximum=1, step=0.1, value=1) with gr.Row(): with gr.Column(min_width=256) as c1: image_1 = gr.Image(interactive=False) image_1_label = gr.Markdown("SD") with gr.Column(min_width=256) as c2: image_2 = gr.Image(interactive=False) image_2_label = gr.Markdown("FreeU") ex = gr.Examples(examples=examples, fn=infer, inputs=[text], outputs=[image_1, image_2], cache_examples=False) ex.dataset.headers = [""] # text.submit(infer, inputs=[text, pip_sd, pip_freeu], outputs=[image_1, image_2]) # btn.click(infer, inputs=[text, pip_sd, pip_freeu], outputs=[image_1, image_2]) block.launch()