Spaces:
Runtime error
Runtime error
File size: 1,199 Bytes
6fedaa7 be9e9ca adcbaca 6fedaa7 6cd6dff 6fedaa7 651d250 6fedaa7 c307f2e 6fedaa7 852d5ad be63a08 6fedaa7 b315b3e 6cd6dff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
import sklearn
import gradio as gr
import joblib
import pandas as pd
import datasets
import requests
import json
import dateutil.parser as dp
import pandas as pd
from huggingface_hub import hf_hub_url, cached_download
import time
title = "Stockholm Highway E4 Real Time Traffic Prediction"
description = "Stockholm E4 (59°23'44.7"" N 17°59'00.4""E) highway real time traffic prediction, updated in every hour"
inputs = [gr.Dataframe(row_count = (1, "fixed"), col_count=(7,"fixed"), label="Input Data", interactive=1)]
outputs = [gr.Dataframe(row_count = (1, "fixed"), col_count=(1, "fixed"), label="Predictions", headers=["Congestion Level"])]
model = joblib.load("./traffic_model.pkl")
response_smhi = requests.get(
'https://opendata-download-metanalys.smhi.se/api/category/mesan1g/version/2/geotype/point/lon/17.983/lat/59.3957/data.json')
json_response_smhi = json.loads(response_smhi.text)
def infer(input_dataframe):
return pd.DataFrame(model.predict(input_dataframe))
referenceTime = dp.parse(json_response_smhi["referenceTime"]).timestamp()
gr.Interface(fn = infer, inputs = inputs, outputs = outputs, title=referenceTime, description=description,live=True).launch() |