Spaces:
Runtime error
Runtime error
import sklearn | |
import gradio as gr | |
import joblib | |
import pandas as pd | |
import datasets | |
import requests | |
import json | |
import dateutil.parser as dp | |
import pandas as pd | |
from huggingface_hub import hf_hub_url, cached_download | |
import time | |
import datetime | |
title = "Stockholm Highway E4 Real Time Traffic Prediction" | |
description = "Stockholm E4 (59°23'44.7"" N 17°59'00.4""E) highway real time traffic prediction, updated in every hour" | |
inputs = [gr.Dataframe(row_count = (1, "fixed"), col_count=(7,"fixed"), label="Input Data", interactive=1)] | |
outputs = [gr.Dataframe(row_count = (1, "fixed"), col_count=(1, "fixed"), label="Predictions", headers=["Congestion Level"])] | |
model = joblib.load("./traffic_model.pkl") | |
response_smhi = requests.get( | |
'https://opendata-download-metanalys.smhi.se/api/category/mesan1g/version/2/geotype/point/lon/17.983/lat/59.3957/data.json') | |
json_response_smhi = json.loads(response_smhi.text) | |
def infer(input_dataframe): | |
return pd.DataFrame(model.predict(input_dataframe)) | |
referenceTime = dp.parse(json_response_smhi["referenceTime"]).timestamp() | |
def get_time(): | |
return datetime.datetime.now() | |
#with gr.Blocks() as demo: | |
# with gr.Row(): | |
# with gr.Column(): | |
# c_time2 = gr.Textbox(label="Current Time refreshed every second") | |
# demo.load(lambda: datetime.datetime.now(), None, c_time2, every=1) | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr.Dataframe(row_count = (1, "fixed"), col_count=(7,"fixed"), | |
headers=["referenceTime", "t", "ws", "prec1h", "fesn1h", "vis", "confidence"], | |
# datatype=["timestamp", "float", "float", "float", "float", "float"], | |
label="Input Data", interactive=1) | |
c_time2 = gr.Textbox(label="Current Time refreshed every second") | |
demo.load(lambda: datetime.datetime.now(), None, c_time2, every=1) | |
with gr.Column: | |
gr.Dataframe(row_count = (1, "fixed"), col_count=(1, "fixed"), label="Predictions", headers=["Congestion Level"]) | |
with gr.Row(): | |
btn_sub = gr.Button(value="Submit") | |
btn_sub.click(infer, inputs = inputs, outputs = outputs) | |
demo.queue().launch() |