import sklearn import gradio as gr import joblib import pandas as pd import datasets import requests import json import dateutil.parser as dp import pandas as pd from huggingface_hub import hf_hub_url, cached_download import time title = "Stockholm Highway E4 Real Time Traffic Prediction" description = "Stockholm E4 (59°23'44.7"" N 17°59'00.4""E) highway real time traffic prediction, updated in every hour" inputs = [gr.Dataframe(row_count = (1, "fixed"), col_count=(7,"fixed"), label="Input Data", interactive=1)] outputs = [gr.Dataframe(row_count = (1, "fixed"), col_count=(1, "fixed"), label="Predictions", headers=["Congestion Level"])] model = joblib.load("./traffic_model.pkl") response_smhi = requests.get( 'https://opendata-download-metanalys.smhi.se/api/category/mesan1g/version/2/geotype/point/lon/17.983/lat/59.3957/data.json') json_response_smhi = json.loads(response_smhi.text) def infer(input_dataframe): return pd.DataFrame(model.predict(input_dataframe)) referenceTime = dp.parse(json_response_smhi["referenceTime"]).timestamp() gr.Interface(fn = infer, inputs = inputs, outputs = outputs, title=referenceTime, description=description,live=True).launch()