File size: 4,919 Bytes
ed4ca74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b53a0b
fe32e45
 
 
 
 
8133318
 
80a9356
 
8133318
80a9356
 
27aa3e6
80a9356
4a36e50
8133318
fe32e45
 
27aa3e6
80a9356
4a36e50
ed4ca74
 
 
e797fa9
ed4ca74
 
 
38298ad
e8dada5
ed4ca74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8dada5
ed4ca74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import re

from langchain_openai import OpenAIEmbeddings
from langchain_openai import ChatOpenAI
from langchain_openai.embeddings import OpenAIEmbeddings

from langchain.prompts import ChatPromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import StrOutputParser

from langchain_community.document_loaders import PyMuPDFLoader
from langchain_community.vectorstores import Qdrant

from langchain_core.runnables import RunnablePassthrough, RunnableParallel
from langchain_core.documents import Document

from operator import itemgetter
import os
from dotenv import load_dotenv
import chainlit as cl

load_dotenv()


ai_framework_document = PyMuPDFLoader(file_path="https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf").load()
ai_blueprint_document = PyMuPDFLoader(file_path="https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf").load()


def metadata_generator(document, name):
    fixed_text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=500,
        chunk_overlap=100,
        separators=["\n\n", "\n", ".", "!", "?"]
    )
    collection = fixed_text_splitter.split_documents(document)
    for doc in collection:
        doc.metadata["source"] = name
    return collection

recursive_framework_document = metadata_generator(ai_framework_document, "AI Framework")
recursive_blueprint_document = metadata_generator(ai_blueprint_document, "AI Blueprint")
combined_documents = recursive_framework_document + recursive_blueprint_document


#from transformers import AutoTokenizer, AutoModel
#import torch
#embeddings = AutoModel.from_pretrained("Cheselle/finetuned-arctic-sentence")
#tokenizer = AutoTokenizer.from_pretrained("Cheselle/finetuned-arctic-sentence")

# Assuming ai_framework_document and ai_blueprint_document are lists of langchain_core.documents.Document
ai_framework_text = "".join([doc.page_content for doc in ai_framework_document])

# Similarly for ai_blueprint_document
ai_blueprint_text = "".join([doc.page_content for doc in ai_blueprint_document])

# Now you can use these text variables




from sentence_transformers import SentenceTransformer
embedding_model = SentenceTransformer("Cheselle/finetuned-arctic-sentence")
embeddings = embedding_model.encode(ai_framework_text + ai_blueprint_text)
#embeddings = embedding_model.encode(ai_framework_text + ai_blueprint_text)
#embeddings = embedding_model.encode(ai_framework_document + ai_blueprint_document)

vectorstore = Qdrant.from_documents(
    documents=combined_documents,
    embedding=embeddings,
    location=":memory:",
    collection_name="ai_policy"
)

retriever = vectorstore.as_retriever()

## Generation LLM
llm = ChatOpenAI(model="gpt-4o-mini")

RAG_PROMPT = """\
You are an AI Policy Expert. 
Given a provided context and question, you must answer the question based only on context. 
Think through your answer carefully and step by step. 

Context: {context}
Question: {question}
"""

rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT)

retrieval_augmented_qa_chain = (
    # INVOKE CHAIN WITH: {"question" : "<<SOME USER QUESTION>>"}
    # "question" : populated by getting the value of the "question" key
    # "context"  : populated by getting the value of the "question" key and chaining it into the base_retriever
    {"context": itemgetter("question") | retriever, "question": itemgetter("question")}
    # "context"  : is assigned to a RunnablePassthrough object (will not be called or considered in the next step)
    #              by getting the value of the "context" key from the previous step
    | RunnablePassthrough.assign(context=itemgetter("context"))
    # "response" : the "context" and "question" values are used to format our prompt object and then piped
    #              into the LLM and stored in a key called "response"
    # "context"  : populated by getting the value of the "context" key from the previous step
    | {"response": rag_prompt | llm, "context": itemgetter("context")}
)

#alt_rag_chain.invoke({"question" : "What is the AI framework all about?"})

@cl.on_message
async def handle_message(message):
    try:
        # Process the incoming question using the RAG chain
        result = retrieval_augmented_qa_chain.invoke({"question": message.content})

        # Create a new message for the response
        response_message = cl.Message(content=result["response"].content)

        # Send the response back to the user
        await response_message.send()
    
    except Exception as e:
        # Handle any exception and log it or send a response back to the user
        error_message = cl.Message(content=f"An error occurred: {str(e)}")
        await error_message.send()
        print(f"Error occurred: {e}")

# Run the ChainLit server
if __name__ == "__main__":
    try:
        cl.run()
    except Exception as e:
        print(f"Server error occurred: {e}")