Spaces:
Sleeping
Sleeping
from langchain_openai import ChatOpenAI | |
from langchain.prompts import ChatPromptTemplate | |
from langchain.schema import StrOutputParser | |
from langchain.schema.runnable import Runnable | |
from langchain.schema.runnable.config import RunnableConfig | |
from dotenv import load_dotenv | |
import os | |
from langchain_community.document_loaders import PyMuPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import Qdrant | |
import chainlit as cl | |
from sentence_transformers import SentenceTransformer | |
# Load environment variables | |
load_dotenv() | |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY") | |
# Custom embedding class for SentenceTransformer | |
class SentenceTransformerEmbedding: | |
def __init__(self, model_name): | |
self.model = SentenceTransformer(model_name) | |
def embed_documents(self, texts): | |
return self.model.encode(texts, convert_to_tensor=True).tolist() # Convert to list for compatibility | |
def __call__(self, texts): | |
return self.embed_documents(texts) # Make it callable | |
# Marks the function to be executed at the start of a user session | |
async def on_chat_start(): | |
model = ChatOpenAI(streaming=True) | |
# Load documents | |
ai_framework_document = PyMuPDFLoader(file_path="https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf").load() | |
ai_blueprint_document = PyMuPDFLoader(file_path="https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf").load() | |
RAG_PROMPT = """\ | |
Given a provided context and question, you must answer the question based only on context. | |
Context: {context} | |
Question: {question} | |
""" | |
rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT) | |
sentence_text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=500, | |
chunk_overlap=100, | |
separators=["\n\n", "\n", ".", "!", "?"] | |
) | |
def metadata_generator(document, name, splitter): | |
collection = splitter.split_documents(document) | |
for doc in collection: | |
doc.metadata["source"] = name | |
return collection | |
sentence_framework = metadata_generator(ai_framework_document, "AI Framework", sentence_text_splitter) | |
sentence_blueprint = metadata_generator(ai_blueprint_document, "AI Blueprint", sentence_text_splitter) | |
sentence_combined_documents = sentence_framework + sentence_blueprint | |
# Initialize the embedding model instance | |
embedding_model = SentenceTransformerEmbedding('Cheselle/finetuned-arctic-sentence') | |
# Create the Qdrant vector store using the embedding instance | |
sentence_vectorstore = Qdrant.from_documents( | |
documents=sentence_combined_documents, | |
embedding=embedding_model, # Pass the embedding instance correctly | |
location=":memory:", | |
collection_name="AI Policy" | |
) | |
# Create retriever from the vector store | |
sentence_retriever = sentence_vectorstore.as_retriever() | |
# Check if retriever is initialized correctly | |
if sentence_retriever is None: | |
raise ValueError("Retriever is not initialized correctly.") | |
# Set the retriever and prompt into session for reuse | |
cl.user_session.set("runnable", model) | |
cl.user_session.set("retriever", sentence_retriever) | |
cl.user_session.set("prompt_template", rag_prompt) | |
# Marks a function to run each time a message is received | |
async def on_message(message: cl.Message): | |
# Get the stored model, retriever, and prompt | |
model = cl.user_session.get("runnable") | |
retriever = cl.user_session.get("retriever") | |
prompt_template = cl.user_session.get("prompt_template") | |
# Log the message content | |
print(f"Received message: {message.content}") | |
# Retrieve relevant context from documents based on the user's message | |
if retriever is None: | |
print("Retriever is not available.") | |
await cl.Message(content="Sorry, the retriever is not initialized.").send() | |
return | |
relevant_docs = retriever.get_relevant_documents(message.content) | |
print(f"Retrieved {len(relevant_docs)} documents.") | |
if not relevant_docs: | |
print("No relevant documents found.") | |
await cl.Message(content="Sorry, I couldn't find any relevant documents.").send() | |
return | |
context = "\n\n".join([doc.page_content for doc in relevant_docs]) | |
# Log the context to check | |
print(f"Context: {context}") | |
# Construct the final RAG prompt | |
final_prompt = prompt_template.format(context=context, question=message.content) | |
print(f"Final prompt: {final_prompt}") | |
# Initialize a streaming message | |
msg = cl.Message(content="") | |
# Stream the response from the model | |
async for chunk in model.astream( | |
final_prompt, | |
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]), | |
): | |
await msg.stream_token(chunk.content) | |
await msg.send() | |