Cheselle commited on
Commit
5776c09
·
verified ·
1 Parent(s): bda9a43

Delete app_v1.py

Browse files
Files changed (1) hide show
  1. app_v1.py +0 -113
app_v1.py DELETED
@@ -1,113 +0,0 @@
1
- from langchain_openai import ChatOpenAI
2
- from langchain.prompts import ChatPromptTemplate
3
- from langchain.schema import StrOutputParser
4
- from langchain.schema.runnable import Runnable
5
- from langchain.schema.runnable.config import RunnableConfig
6
- from typing import cast
7
- from dotenv import load_dotenv
8
- import os
9
- from langchain_community.document_loaders import PyMuPDFLoader
10
- from langchain.text_splitter import RecursiveCharacterTextSplitter
11
- from langchain_openai.embeddings import OpenAIEmbeddings
12
- from langchain_community.vectorstores import Qdrant
13
- from langchain_core.runnables import RunnablePassthrough, RunnableParallel
14
- import chainlit as cl
15
- from pathlib import Path
16
- from sentence_transformers import SentenceTransformer # Ensure this import is correct
17
-
18
- load_dotenv()
19
-
20
- os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
21
-
22
- @cl.on_chat_start
23
- async def on_chat_start():
24
- model = ChatOpenAI(streaming=True)
25
-
26
- # Load documents
27
- ai_framework_document = PyMuPDFLoader(file_path="https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf").load()
28
- ai_blueprint_document = PyMuPDFLoader(file_path="https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf").load()
29
-
30
- RAG_PROMPT = """\
31
- Given a provided context and question, you must answer the question based only on context.
32
-
33
- Context: {context}
34
- Question: {question}
35
- """
36
-
37
- rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT)
38
-
39
- sentence_text_splitter = RecursiveCharacterTextSplitter(
40
- chunk_size=500,
41
- chunk_overlap=100,
42
- separators=["\n\n", "\n", ".", "!", "?"]
43
- )
44
-
45
- def metadata_generator(document, name, splitter):
46
- collection = splitter.split_documents(document)
47
- for doc in collection:
48
- doc.metadata["source"] = name
49
- return collection
50
-
51
- sentence_framework = metadata_generator(ai_framework_document, "AI Framework", sentence_text_splitter)
52
- sentence_blueprint = metadata_generator(ai_blueprint_document, "AI Blueprint", sentence_text_splitter)
53
-
54
- sentence_combined_documents = sentence_framework + sentence_blueprint
55
-
56
- # Initialize the SentenceTransformer model properly
57
- embedding_model = SentenceTransformer('Cheselle/finetuned-arctic-sentence')
58
-
59
- # Create the Qdrant vector store using the initialized embedding model
60
- sentence_vectorstore = Qdrant.from_documents(
61
- documents=sentence_combined_documents,
62
- embedding=embedding_model, # Ensure this is an instance
63
- location=":memory:",
64
- collection_name="AI Policy"
65
- )
66
-
67
- sentence_retriever = sentence_vectorstore.as_retriever()
68
-
69
- # Set the retriever and prompt into session for reuse
70
- cl.user_session.set("runnable", model)
71
- cl.user_session.set("retriever", sentence_retriever)
72
- cl.user_session.set("prompt_template", rag_prompt)
73
-
74
-
75
- @cl.on_message
76
- async def on_message(message: cl.Message):
77
- # Get the stored model, retriever, and prompt
78
- model = cast(ChatOpenAI, cl.user_session.get("runnable"))
79
- retriever = cl.user_session.get("retriever")
80
- prompt_template = cl.user_session.get("prompt_template")
81
-
82
- # Log the message content
83
- print(f"Received message: {message.content}")
84
-
85
- # Retrieve relevant context from documents based on the user's message
86
- relevant_docs = retriever.get_relevant_documents(message.content)
87
- print(f"Retrieved {len(relevant_docs)} documents.")
88
-
89
- if not relevant_docs:
90
- print("No relevant documents found.")
91
- await cl.Message(content="Sorry, I couldn't find any relevant documents.").send()
92
- return
93
-
94
- context = "\n\n".join([doc.page_content for doc in relevant_docs])
95
-
96
- # Log the context to check
97
- print(f"Context: {context}")
98
-
99
- # Construct the final RAG prompt
100
- final_prompt = prompt_template.format(context=context, question=message.content)
101
- print(f"Final prompt: {final_prompt}")
102
-
103
- # Initialize a streaming message
104
- msg = cl.Message(content="")
105
-
106
- # Stream the response from the model
107
- async for chunk in model.astream(
108
- final_prompt,
109
- config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
110
- ):
111
- await msg.stream_token(chunk.content)
112
-
113
- await msg.send()