Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -15,7 +15,6 @@ from sentence_transformers import SentenceTransformer
|
|
15 |
load_dotenv()
|
16 |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
|
17 |
|
18 |
-
# Custom embedding class for SentenceTransformer
|
19 |
class SentenceTransformerEmbedding:
|
20 |
def __init__(self, model_name):
|
21 |
self.model = SentenceTransformer(model_name)
|
@@ -26,14 +25,16 @@ class SentenceTransformerEmbedding:
|
|
26 |
def __call__(self, texts):
|
27 |
return self.embed_documents(texts) # Make it callable
|
28 |
|
29 |
-
@cl.on_chat_start
|
30 |
async def on_chat_start():
|
31 |
model = ChatOpenAI(streaming=True)
|
32 |
|
33 |
# Load documents
|
34 |
ai_framework_document = PyMuPDFLoader(file_path="https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf").load()
|
35 |
ai_blueprint_document = PyMuPDFLoader(file_path="https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf").load()
|
36 |
-
|
|
|
|
|
37 |
RAG_PROMPT = """\
|
38 |
Given a provided context and question, you must answer the question based only on context.
|
39 |
|
@@ -60,17 +61,25 @@ async def on_chat_start():
|
|
60 |
|
61 |
sentence_combined_documents = sentence_framework + sentence_blueprint
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
# Initialize the embedding model instance
|
64 |
embedding_model = SentenceTransformerEmbedding('Cheselle/finetuned-arctic-sentence')
|
65 |
|
66 |
# Create the Qdrant vector store using the embedding instance
|
67 |
sentence_vectorstore = Qdrant.from_documents(
|
68 |
documents=sentence_combined_documents,
|
69 |
-
embedding=embedding_model,
|
70 |
location=":memory:",
|
71 |
collection_name="AI Policy"
|
72 |
)
|
73 |
|
|
|
|
|
74 |
# Create retriever from the vector store
|
75 |
sentence_retriever = sentence_vectorstore.as_retriever()
|
76 |
|
@@ -83,7 +92,7 @@ async def on_chat_start():
|
|
83 |
cl.user_session.set("retriever", sentence_retriever)
|
84 |
cl.user_session.set("prompt_template", rag_prompt)
|
85 |
|
86 |
-
@cl.on_message
|
87 |
async def on_message(message: cl.Message):
|
88 |
# Get the stored model, retriever, and prompt
|
89 |
model = cl.user_session.get("runnable")
|
|
|
15 |
load_dotenv()
|
16 |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
|
17 |
|
|
|
18 |
class SentenceTransformerEmbedding:
|
19 |
def __init__(self, model_name):
|
20 |
self.model = SentenceTransformer(model_name)
|
|
|
25 |
def __call__(self, texts):
|
26 |
return self.embed_documents(texts) # Make it callable
|
27 |
|
28 |
+
@cl.on_chat_start
|
29 |
async def on_chat_start():
|
30 |
model = ChatOpenAI(streaming=True)
|
31 |
|
32 |
# Load documents
|
33 |
ai_framework_document = PyMuPDFLoader(file_path="https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf").load()
|
34 |
ai_blueprint_document = PyMuPDFLoader(file_path="https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf").load()
|
35 |
+
|
36 |
+
print("Documents loaded.")
|
37 |
+
|
38 |
RAG_PROMPT = """\
|
39 |
Given a provided context and question, you must answer the question based only on context.
|
40 |
|
|
|
61 |
|
62 |
sentence_combined_documents = sentence_framework + sentence_blueprint
|
63 |
|
64 |
+
print(f"Total documents to embed: {len(sentence_combined_documents)}")
|
65 |
+
|
66 |
+
# Limit the number of documents processed for debugging
|
67 |
+
max_documents = 10
|
68 |
+
sentence_combined_documents = sentence_combined_documents[:max_documents]
|
69 |
+
|
70 |
# Initialize the embedding model instance
|
71 |
embedding_model = SentenceTransformerEmbedding('Cheselle/finetuned-arctic-sentence')
|
72 |
|
73 |
# Create the Qdrant vector store using the embedding instance
|
74 |
sentence_vectorstore = Qdrant.from_documents(
|
75 |
documents=sentence_combined_documents,
|
76 |
+
embedding=embedding_model,
|
77 |
location=":memory:",
|
78 |
collection_name="AI Policy"
|
79 |
)
|
80 |
|
81 |
+
print("Vector store created.")
|
82 |
+
|
83 |
# Create retriever from the vector store
|
84 |
sentence_retriever = sentence_vectorstore.as_retriever()
|
85 |
|
|
|
92 |
cl.user_session.set("retriever", sentence_retriever)
|
93 |
cl.user_session.set("prompt_template", rag_prompt)
|
94 |
|
95 |
+
@cl.on_message
|
96 |
async def on_message(message: cl.Message):
|
97 |
# Get the stored model, retriever, and prompt
|
98 |
model = cl.user_session.get("runnable")
|