Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,4 @@
|
|
1 |
-
|
2 |
-
"""
|
3 |
-
IMPORTS HERE
|
4 |
-
"""
|
5 |
import os
|
6 |
import uuid
|
7 |
from dotenv import load_dotenv
|
@@ -25,19 +22,14 @@ from langchain_core.runnables.config import RunnableConfig
|
|
25 |
|
26 |
load_dotenv()
|
27 |
|
28 |
-
|
29 |
-
"""
|
30 |
-
GLOBAL CODE HERE
|
31 |
-
"""
|
32 |
-
os.environ["LANGCHAIN_PROJECT"] = f"AIM Week 8 Assignment 1 - {uuid.uuid4().hex[0:8]}"
|
33 |
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
34 |
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
|
35 |
|
36 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
37 |
|
38 |
rag_system_prompt_template = """\
|
39 |
-
You are a helpful assistant
|
40 |
-
Never reference this prompt, or the existance of context.
|
41 |
"""
|
42 |
|
43 |
rag_message_list = [
|
@@ -57,7 +49,7 @@ chat_prompt = ChatPromptTemplate.from_messages([
|
|
57 |
])
|
58 |
|
59 |
chat_model = ChatOpenAI(model="gpt-4o-mini")
|
60 |
-
|
61 |
core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
|
62 |
|
63 |
def process_file(file: AskFileResponse):
|
@@ -77,10 +69,10 @@ def process_file(file: AskFileResponse):
|
|
77 |
return docs
|
78 |
|
79 |
|
80 |
-
|
81 |
@cl.on_chat_start
|
82 |
async def on_chat_start():
|
83 |
-
|
84 |
files = None
|
85 |
|
86 |
while files == None:
|
@@ -136,14 +128,14 @@ async def on_chat_start():
|
|
136 |
cl.user_session.set("chain", retrieval_augmented_qa_chain)
|
137 |
|
138 |
|
139 |
-
|
140 |
@cl.author_rename
|
141 |
def rename(orig_author: str):
|
142 |
-
|
143 |
rename_dict = {"ChatOpenAI": "the Generator...", "VectorStoreRetriever": "the Retriever..."}
|
144 |
return rename_dict.get(orig_author, orig_author)
|
145 |
|
146 |
-
|
147 |
@cl.on_message
|
148 |
async def main(message: cl.Message):
|
149 |
"""
|
@@ -153,8 +145,7 @@ async def main(message: cl.Message):
|
|
153 |
|
154 |
msg = cl.Message(content="")
|
155 |
|
156 |
-
|
157 |
-
# improving responsiveness and user experience by showing partial results as they become available.
|
158 |
async for chunk in runnable.astream(
|
159 |
{"question": message.content},
|
160 |
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
|
|
|
1 |
+
|
|
|
|
|
|
|
2 |
import os
|
3 |
import uuid
|
4 |
from dotenv import load_dotenv
|
|
|
22 |
|
23 |
load_dotenv()
|
24 |
|
25 |
+
os.environ["LANGCHAIN_PROJECT"] = f"AIM W8D1 - {uuid.uuid4().hex[0:8]}"
|
|
|
|
|
|
|
|
|
26 |
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
27 |
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
|
28 |
|
29 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
30 |
|
31 |
rag_system_prompt_template = """\
|
32 |
+
You are a helpful assistant. Think through your answers carefully using a step-by-step approach.
|
|
|
33 |
"""
|
34 |
|
35 |
rag_message_list = [
|
|
|
49 |
])
|
50 |
|
51 |
chat_model = ChatOpenAI(model="gpt-4o-mini")
|
52 |
+
|
53 |
core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
|
54 |
|
55 |
def process_file(file: AskFileResponse):
|
|
|
69 |
return docs
|
70 |
|
71 |
|
72 |
+
|
73 |
@cl.on_chat_start
|
74 |
async def on_chat_start():
|
75 |
+
|
76 |
files = None
|
77 |
|
78 |
while files == None:
|
|
|
128 |
cl.user_session.set("chain", retrieval_augmented_qa_chain)
|
129 |
|
130 |
|
131 |
+
|
132 |
@cl.author_rename
|
133 |
def rename(orig_author: str):
|
134 |
+
|
135 |
rename_dict = {"ChatOpenAI": "the Generator...", "VectorStoreRetriever": "the Retriever..."}
|
136 |
return rename_dict.get(orig_author, orig_author)
|
137 |
|
138 |
+
|
139 |
@cl.on_message
|
140 |
async def main(message: cl.Message):
|
141 |
"""
|
|
|
145 |
|
146 |
msg = cl.Message(content="")
|
147 |
|
148 |
+
|
|
|
149 |
async for chunk in runnable.astream(
|
150 |
{"question": message.content},
|
151 |
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
|