import os import uuid from dotenv import load_dotenv from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_community.document_loaders import PyMuPDFLoader from qdrant_client import QdrantClient from qdrant_client.http.models import Distance, VectorParams from langchain_openai.embeddings import OpenAIEmbeddings from langchain.storage import LocalFileStore from langchain_qdrant import QdrantVectorStore from langchain.embeddings import CacheBackedEmbeddings from langchain_core.prompts import ChatPromptTemplate from chainlit.types import AskFileResponse from langchain_core.globals import set_llm_cache from langchain_openai import ChatOpenAI from langchain_core.caches import InMemoryCache from operator import itemgetter from langchain_core.runnables.passthrough import RunnablePassthrough import chainlit as cl from langchain_core.runnables.config import RunnableConfig import time load_dotenv() os.environ["LANGCHAIN_PROJECT"] = f"AIM W8D1 - {uuid.uuid4().hex[0:8]}" os.environ["LANGCHAIN_TRACING_V2"] = "true" os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com" text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) rag_system_prompt_template = """\ You are a helpful assistant. Think through your answers carefully using a step-by-step approach. """ rag_message_list = [ {"role" : "system", "content" : rag_system_prompt_template}, ] rag_user_prompt_template = """\ Question: {question} Context: {context} """ chat_prompt = ChatPromptTemplate.from_messages([ ("system", rag_system_prompt_template), ("human", rag_user_prompt_template) ]) chat_model = ChatOpenAI(model="gpt-4o-mini") core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small") def process_file(file: AskFileResponse): import tempfile with tempfile.NamedTemporaryFile(mode="w", delete=False) as tempfile: with open(tempfile.name, "wb") as f: f.write(file.content) Loader = PyMuPDFLoader loader = Loader(tempfile.name) documents = loader.load() docs = text_splitter.split_documents(documents) for i, doc in enumerate(docs): doc.metadata["source"] = f"source_{i}" return docs @cl.on_chat_start async def on_chat_start(): files = None while files == None: files = await cl.AskFileMessage( content="Please upload a PDF file to begin!", accept=["application/pdf"], max_size_mb=20, timeout=180, max_files=1 ).send() file = files[0] msg = cl.Message( content=f"Processing `{file.name}`...", ) await msg.send() docs = process_file(file) # Typical QDrant Client Set-up collection_name = f"pdf_to_parse_{uuid.uuid4()}" client = QdrantClient(":memory:") client.create_collection( collection_name=collection_name, vectors_config=VectorParams(size=1536, distance=Distance.COSINE), ) # Adding cache! store = LocalFileStore("./cache/") cached_embedder = CacheBackedEmbeddings.from_bytes_store( core_embeddings, store, namespace=core_embeddings.model ) # Typical QDrant Vector Store Set-up vectorstore = QdrantVectorStore( client=client, collection_name=collection_name, embedding=cached_embedder) vectorstore.add_documents(docs) retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 3}) retrieval_augmented_qa_chain = ( {"context": itemgetter("question") | retriever, "question": itemgetter("question")} | RunnablePassthrough.assign(context=itemgetter("context")) | chat_prompt | chat_model ) msg.content = f"Processing `{file.name}` done. You can now ask questions!" await msg.update() cl.user_session.set("chain", retrieval_augmented_qa_chain) @cl.author_rename def rename(orig_author: str): rename_dict = {"ChatOpenAI": "the Generator...", "VectorStoreRetriever": "the Retriever..."} return rename_dict.get(orig_author, orig_author) @cl.on_message async def main(message: cl.Message): """ MESSAGE CODE HERE """ runnable = cl.user_session.get("chain") msg = cl.Message(content="") async for chunk in runnable.astream( {"question": message.content}, ): await msg.stream_token(chunk.content) await msg.send()