Spaces:
Sleeping
Sleeping
Rename caption.py to app.py
Browse files- app.py +15 -0
- caption.py +0 -44
app.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from caption import predict_step
|
4 |
+
|
5 |
+
with gr.Blocks() as demo:
|
6 |
+
image = gr.Image(type='pil', label='Image')
|
7 |
+
label = gr.Text(label='Generated Caption')
|
8 |
+
image.upload(
|
9 |
+
predict_step,
|
10 |
+
[image],
|
11 |
+
[label]
|
12 |
+
)
|
13 |
+
|
14 |
+
if __name__ == '__main__':
|
15 |
+
demo.launch(share=True)
|
caption.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import AutoProcessor, AutoModelForCausalLM
|
3 |
-
import torch
|
4 |
-
from PIL import Image
|
5 |
-
|
6 |
-
with gr.Blocks() as demo:
|
7 |
-
image = gr.Image(type='pil', label='Image')
|
8 |
-
label = gr.Text(label='Generated Caption')
|
9 |
-
image.upload(
|
10 |
-
[image],
|
11 |
-
[label]
|
12 |
-
)
|
13 |
-
|
14 |
-
if __name__ == '__main__':
|
15 |
-
demo.launch(share=True)
|
16 |
-
|
17 |
-
model = AutoModelForCausalLM.from_pretrained("Chesscorner/git-chess-v3")
|
18 |
-
processor = AutoProcessor.from_pretrained("Chesscorner/git-chess-v3")
|
19 |
-
|
20 |
-
# Set up device and move model to it
|
21 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
-
model.to(device)
|
23 |
-
|
24 |
-
# Enable mixed precision if on GPU
|
25 |
-
use_fp16 = device.type == "cuda"
|
26 |
-
if use_fp16:
|
27 |
-
model.half()
|
28 |
-
|
29 |
-
# Set generation parameters
|
30 |
-
gen_kwargs = {'max_length': 100, 'num_beams': 2} # Adjust num_beams if needed
|
31 |
-
|
32 |
-
|
33 |
-
# Prediction function
|
34 |
-
def predict_step(image):
|
35 |
-
# Preprocess the image
|
36 |
-
pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(device)
|
37 |
-
|
38 |
-
# Generate predictions with no_grad for efficiency
|
39 |
-
with torch.no_grad():
|
40 |
-
output_ids = model.generate(pixel_values=pixel_values, **gen_kwargs)
|
41 |
-
|
42 |
-
# Decode predictions
|
43 |
-
preds = processor.batch_decode(output_ids, skip_special_tokens=True)
|
44 |
-
return preds[0].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|