ChiBenevisamPas's picture
Create app.py
cc29966 verified
raw
history blame
7.6 kB
import gradio as gr
import moviepy.editor as mp
import librosa
from transformers import pipeline
from concurrent.futures import ThreadPoolExecutor
import tempfile
import docx # To create Word documents
from moviepy.video.tools.subtitles import SubtitlesClip
from moviepy.editor import TextClip
# Load Whisper model for speech-to-text (using smaller 'tiny' model for faster performance)
asr = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
# MarianMT or M2M100 for translation (multi-language)
translator = pipeline("translation", model="facebook/m2m100_418M")
# Store generated subtitles and translations
subtitle_storage = {}
# Supported languages with their codes
languages = {
"Persian": "fa",
"French": "fr",
"Spanish": "es",
"German": "de",
"Chinese": "zh",
"Arabic": "ar",
"Hindi": "hi",
"Russian": "ru"
}
def transcribe_audio(chunk):
"""Transcribe a single audio chunk."""
return asr(chunk)["text"]
def add_subtitle(video):
try:
# The video is passed as a file path string, so we use it directly
video_path = video if isinstance(video, str) else None
if not video_path:
return "No video provided!"
video = mp.VideoFileClip(video_path)
audio = video.audio
# Use a temporary file for audio extraction
with tempfile.NamedTemporaryFile(delete=True, suffix='.wav') as tmp_audio_file:
audio.write_audiofile(tmp_audio_file.name, codec='pcm_s16le')
waveform, sr = librosa.load(tmp_audio_file.name, sr=16000)
# Transcribe in chunks (parallel)
chunk_duration = 15 # seconds
chunk_size = sr * chunk_duration
chunks = [waveform[i:i + chunk_size] for i in range(0, len(waveform), chunk_size) if len(waveform[i:i + chunk_size]) > 0]
with ThreadPoolExecutor() as executor:
transcriptions = list(executor.map(transcribe_audio, chunks))
full_transcription = " ".join(transcriptions)
subtitle_storage["original"] = full_transcription # Store the original subtitle
subtitle_storage["video_path"] = video_path # Store the video path
return f"Subtitle added: {full_transcription[:100]}..." # Display first 100 characters
except Exception as e:
return f"Error in adding subtitle: {e}"
def translate_subtitle(video, language):
try:
# Translate the stored subtitle
original_subtitle = subtitle_storage.get("original")
if not original_subtitle:
return "No subtitle to translate!"
# Translate using the selected language
translated_subtitle = translator(
original_subtitle,
src_lang="en", # Source language (assuming the subtitle is in English)
tgt_lang=languages[language] # Get the language code from the dropdown selection
)[0]["translation_text"]
subtitle_storage["translated"] = translated_subtitle # Store the translated subtitle
return f"Subtitle translated to {language} successfully!"
except Exception as e:
return f"Error in translating subtitle: {e}"
def download_word():
try:
# Save translated subtitles to a Word document
translated_subtitle = subtitle_storage.get("translated")
if not translated_subtitle:
return "No translated subtitle to save!"
# Prepare the document
doc = docx.Document()
doc.add_heading('Translated Subtitles', 0)
# Create timestamps and subtitles
for i in range(0, len(translated_subtitle), 50):
start_time = (i // 50) * 5 # Each subtitle lasts for 5 seconds
subtitle_text = translated_subtitle[i:i + 50] # Get the next 50 characters
# Add a formatted string with timestamp and subtitle to the document
doc.add_paragraph(f"{start_time}s - {subtitle_text}")
file_path = "translated_subtitles.docx"
doc.save(file_path)
# Return the file for download
return file_path # Return the file path to allow Gradio to serve it as a downloadable file
except Exception as e:
return f"Error in saving subtitles as Word: {e}"
def download_video():
try:
# Add subtitles to the video
original_subtitle = subtitle_storage.get("original")
translated_subtitle = subtitle_storage.get("translated")
if not original_subtitle or not translated_subtitle:
return "No subtitles to overlay on video!"
video_path = subtitle_storage.get("video_path")
video = mp.VideoFileClip(video_path)
# Function to generate subtitle text
generator = lambda txt: TextClip(txt, font='Arial', fontsize=24, color='white')
# Generate subtitles (assuming each subtitle appears for 5 seconds)
subs = []
subtitle_length = 5 # seconds each subtitle will be displayed
for i in range(0, len(translated_subtitle), 50):
start_time = (i // 50) * subtitle_length
subtitle_text = translated_subtitle[i:i + 50] # Get the next 50 characters
subs.append((start_time, subtitle_text)) # Create a tuple for start time and text
# Create subtitle clips
subtitles = SubtitlesClip(subs, generator)
# Overlay subtitles on video
subtitled_video = mp.CompositeVideoClip([video, subtitles.set_position(('center', 'bottom'))])
output_video_path = "subtitled_video.mp4"
subtitled_video.write_videofile(output_video_path)
return f"Subtitled video is ready for download: {output_video_path}"
except Exception as e:
return f"Error in generating subtitled video: {e}"
# Gradio UI Interface
with gr.Blocks() as demo:
# Title
gr.Markdown("<h1 style='text-align: center;'>Video Subtitle Translator</h1>")
# Video Upload
with gr.Row():
video_input = gr.Video(label="Upload Video")
upload_button = gr.Button("Upload Video")
upload_status = gr.Textbox(label="Upload Status")
upload_button.click(add_subtitle, inputs=video_input, outputs=upload_status)
# Add Subtitle
with gr.Row():
add_subtitle_button = gr.Button("Add Subtitle")
subtitle_status = gr.Textbox(label="Subtitle Status")
add_subtitle_button.click(add_subtitle, inputs=video_input, outputs=subtitle_status)
# Translate Subtitle
with gr.Row():
language_dropdown = gr.Dropdown(choices=list(languages.keys()), label="Choose Target Language", value="Persian")
translate_button = gr.Button("Translate Subtitle")
translate_status = gr.Textbox(label="Translation Status")
translate_button.click(translate_subtitle, inputs=[video_input, language_dropdown], outputs=translate_status)
# Download as Word
with gr.Row():
download_button = gr.Button("Download as Word")
download_status = gr.File(label="Download Translated Word File") # File output for Word download
download_button.click(download_word, inputs=None, outputs=download_status)
# Download Subtitled Video
with gr.Row():
download_video_button = gr.Button("Download Subtitled Video")
download_video_status = gr.Textbox(label="Download Video Status")
download_video_button.click(download_video, inputs=None, outputs=download_video_status)
# Launch the Gradio app111110000000000000000
demo.launch()