Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,46 @@
|
|
1 |
import gradio as gr
|
2 |
import whisper
|
3 |
import os
|
|
|
4 |
|
5 |
# Load the Whisper model
|
6 |
model = whisper.load_model("base") # Choose 'tiny', 'base', 'small', 'medium', or 'large'
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
with open(output_file, "w") as f:
|
10 |
for i, segment in enumerate(transcription['segments']):
|
11 |
start = segment['start']
|
12 |
end = segment['end']
|
13 |
text = segment['text']
|
|
|
|
|
|
|
|
|
|
|
14 |
# Format timestamps for SRT
|
15 |
start_time = whisper.utils.format_timestamp(start)
|
16 |
end_time = whisper.utils.format_timestamp(end)
|
@@ -19,16 +49,22 @@ def write_srt(transcription, output_file):
|
|
19 |
f.write(f"{start_time} --> {end_time}\n")
|
20 |
f.write(f"{text.strip()}\n\n")
|
21 |
|
22 |
-
def transcribe_video(video_file, language):
|
23 |
# Transcribe the video to generate subtitles
|
24 |
result = model.transcribe(video_file.name, language=language)
|
25 |
|
26 |
# Get the video file name without extension and create the SRT file name
|
27 |
video_name = os.path.splitext(os.path.basename(video_file.name))[0]
|
28 |
-
srt_file = f"{video_name}.srt"
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
# Write the transcription as subtitles
|
31 |
-
write_srt(result, srt_file)
|
32 |
|
33 |
return srt_file
|
34 |
|
@@ -37,11 +73,12 @@ iface = gr.Interface(
|
|
37 |
fn=transcribe_video,
|
38 |
inputs=[
|
39 |
gr.File(label="Upload Video"),
|
40 |
-
gr.Dropdown(label="Select Language", choices=["en", "es", "fr", "de", "it", "pt"], value="en")
|
|
|
41 |
],
|
42 |
outputs=gr.File(label="Download Subtitles"),
|
43 |
-
title="Video Subtitle Generator",
|
44 |
-
description="Upload a video file to generate subtitles using Whisper. Select the language of the video."
|
45 |
)
|
46 |
|
47 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
import whisper
|
3 |
import os
|
4 |
+
from transformers import MarianMTModel, MarianTokenizer
|
5 |
|
6 |
# Load the Whisper model
|
7 |
model = whisper.load_model("base") # Choose 'tiny', 'base', 'small', 'medium', or 'large'
|
8 |
|
9 |
+
# Load MarianMT translation model for Persian
|
10 |
+
def load_translation_model(target_language):
|
11 |
+
# Map of language codes to MarianMT model names
|
12 |
+
lang_models = {
|
13 |
+
"fa": "Helsinki-NLP/opus-mt-en-fa", # English to Persian (Farsi)
|
14 |
+
"es": "Helsinki-NLP/opus-mt-en-es", # English to Spanish
|
15 |
+
"fr": "Helsinki-NLP/opus-mt-en-fr", # English to French
|
16 |
+
# Add more models for other languages as needed
|
17 |
+
}
|
18 |
+
|
19 |
+
model_name = lang_models.get(target_language)
|
20 |
+
if not model_name:
|
21 |
+
raise ValueError(f"Translation model for {target_language} not found")
|
22 |
+
|
23 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
24 |
+
translation_model = MarianMTModel.from_pretrained(model_name)
|
25 |
+
return tokenizer, translation_model
|
26 |
+
|
27 |
+
def translate_text(text, tokenizer, model):
|
28 |
+
# Tokenize the input text and translate
|
29 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
30 |
+
translated = model.generate(**inputs)
|
31 |
+
return tokenizer.decode(translated[0], skip_special_tokens=True)
|
32 |
+
|
33 |
+
def write_srt(transcription, output_file, tokenizer=None, translation_model=None):
|
34 |
with open(output_file, "w") as f:
|
35 |
for i, segment in enumerate(transcription['segments']):
|
36 |
start = segment['start']
|
37 |
end = segment['end']
|
38 |
text = segment['text']
|
39 |
+
|
40 |
+
# Translate text if translation model is provided
|
41 |
+
if translation_model:
|
42 |
+
text = translate_text(text, tokenizer, translation_model)
|
43 |
+
|
44 |
# Format timestamps for SRT
|
45 |
start_time = whisper.utils.format_timestamp(start)
|
46 |
end_time = whisper.utils.format_timestamp(end)
|
|
|
49 |
f.write(f"{start_time} --> {end_time}\n")
|
50 |
f.write(f"{text.strip()}\n\n")
|
51 |
|
52 |
+
def transcribe_video(video_file, language, target_language):
|
53 |
# Transcribe the video to generate subtitles
|
54 |
result = model.transcribe(video_file.name, language=language)
|
55 |
|
56 |
# Get the video file name without extension and create the SRT file name
|
57 |
video_name = os.path.splitext(os.path.basename(video_file.name))[0]
|
58 |
+
srt_file = f"{video_name}_{target_language}.srt"
|
59 |
+
|
60 |
+
# Load the translation model for the selected language
|
61 |
+
if target_language != "en": # No translation needed if target is English
|
62 |
+
tokenizer, translation_model = load_translation_model(target_language)
|
63 |
+
else:
|
64 |
+
tokenizer, translation_model = None, None
|
65 |
|
66 |
+
# Write the transcription as subtitles (with optional translation)
|
67 |
+
write_srt(result, srt_file, tokenizer, translation_model)
|
68 |
|
69 |
return srt_file
|
70 |
|
|
|
73 |
fn=transcribe_video,
|
74 |
inputs=[
|
75 |
gr.File(label="Upload Video"),
|
76 |
+
gr.Dropdown(label="Select Video Language", choices=["en", "es", "fr", "de", "it", "pt"], value="en"),
|
77 |
+
gr.Dropdown(label="Select Subtitle Language", choices=["en", "fa", "es", "fr"], value="fa") # Added Persian (fa) as an option
|
78 |
],
|
79 |
outputs=gr.File(label="Download Subtitles"),
|
80 |
+
title="Video Subtitle Generator with Translation",
|
81 |
+
description="Upload a video file to generate subtitles using Whisper. Select the language of the video and the target subtitle language."
|
82 |
)
|
83 |
|
84 |
if __name__ == "__main__":
|